Heterogeneous Catalysis and Green Chemistry

Radha V Jayaram, Institute of Chemical Technology, Mumbai Why Green Chemistry?

What is Green Chemistry?

How catalysts can make a process green?

Emergence of chemistry in the modern era

Chemistry has changed our lives ?

- An understatement Chemistry has become part of our lives.
- There is practically no human activity that does not involve chemistry at some stage or the other.
- Food, transport, medicine, lifestyle- you name it-

Chemistry has become an all-pervading science.

The other side of the coin

• Even Chemistry could not defy the laws of physics and philosophy.

Anything that grows out of proportion can also become out of control.

• Many unpleasant side effects and events.

Today this may appear as a funny picture Tomorrow this may be a real scene

Result

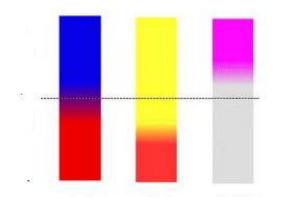
- A negative perception of the public and opposition to new chemical plants.
- A steep decline in the number of people interested in higher education.
- Decline in R &D in chemistry, all over the world

- This warranted a strong legislation, public awareness and support, and above all, a different way of doing chemistry.
- And the Green Chemistry Movement was initiated

Action plan

Accountability- Not gross, at the atomic level

Waste Management? minimization? -


Not enough- Zero waste

- Optimized use of resources
- Mild conditions

Use of safer reagents and solvents

• Less number of process steps

Need for indicators

An indicator is a numerical measure used to show the progress toward achieving a specified outcome.

According to Lapkin (2002), a group of indicators selected in order to characterise a complex phenomenon constitute a METRIC

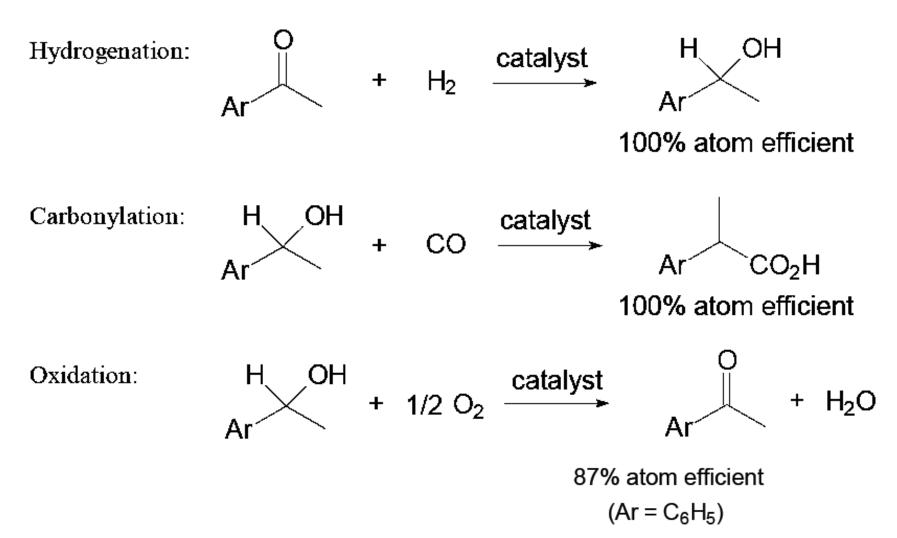
Atom Economy

The **Atom Economy** concept (Trost 1991) calculates how much of the reactants remain in the end of a chemical transformation.

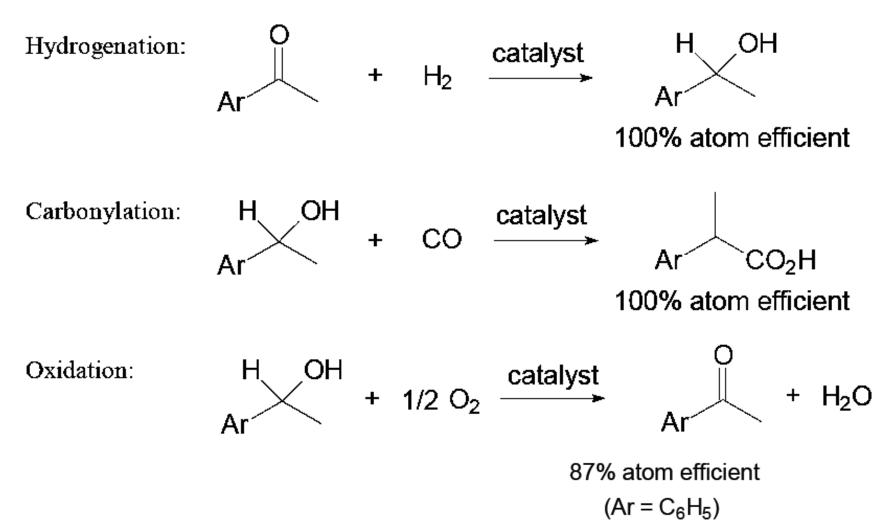
The method ignores reaction yield and molar excess of reactants, neither accounts for solvents and reagents (Constable et al. 2002).

We can define the percent atom economy (% AE) of a reaction by the formula $\$

 $\% AE = \frac{\text{formula mass of desired final product}}{\text{sum of formula masses of all the reactants}} \times 100\%$


It is TH "E" factor that counts

The Environmental (E) factor quantifies the mass of waste generated per mass of product (Sheldon 1994, 1997).


The specific hazard posed by different waste types is not taken into account.

Name	Definition	Units
Atom economy =	MW product x 100 MW all reagents	%
Effective Mass Yield (EMY) =	Mass product x 100 Mass non-benign reagents	%
E factor =	Mass waste Mass product	kg/kg
Mass intensity = (MI)	Total mass Mass product	kg/kg
Mass productivity =	Mass product x 100 Total mass reagents	%
Reaction Mass Efficiency (RME) =	Mass isolated product x 100 Total mass reagents	%
Carbon efficiency =	Mass carbon in product x 100 Total mass carbon in reagents	%

Atom Efficient Processes

Atom efficient process

Catalysisto open the gates to Green World

Catalysis is a science at the interface between chemistry, physics, biology and materials science.

It enables chemical processes to be realized in a cost, energy and eco-efficient manner.

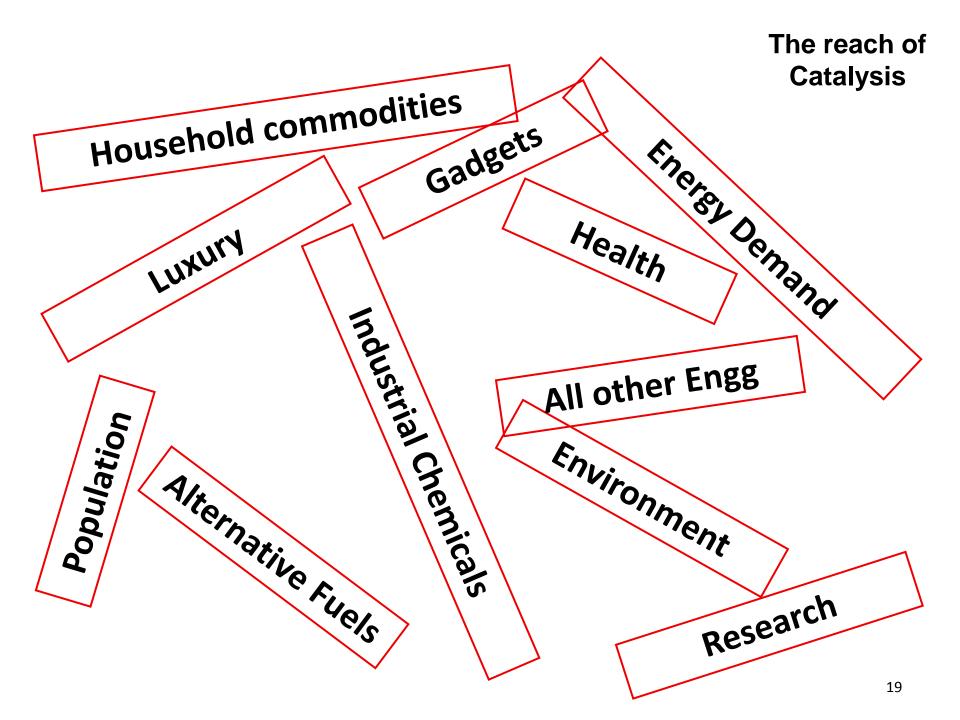
More than 80% of the processes in the chemical Industry worth approximately €1500 billion, depend on

catalytic technologies.

➤Catalysis is a science at the interface between chemistry, physics, biology and materials science.

It enables chemical processes to be realized in a cost, energy and ecoefficient manner.

More than 80% of the processes in the chemical Industry worth approximately €1500 billion, depend on catalytic technologies.

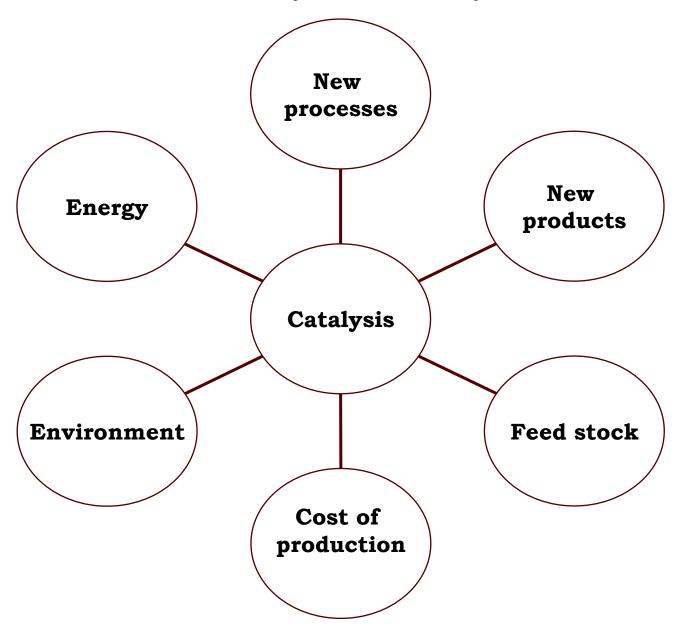

➤The term 'catalysis' was coined by Berzelius in 1836.

➢He concluded that besides' Affinity' a new force is operative, the' Catalytic Force'.Reaction occurred by catalytic contact.

≻The word 'catalysis' stems from the Greek – to 'loosen'.

According to the IUPAC (1976) – A catalyst is a substance that, being present in small proportions, increases the rate of attainment of chemical equilibrium, without itself undergoing a chemical change.

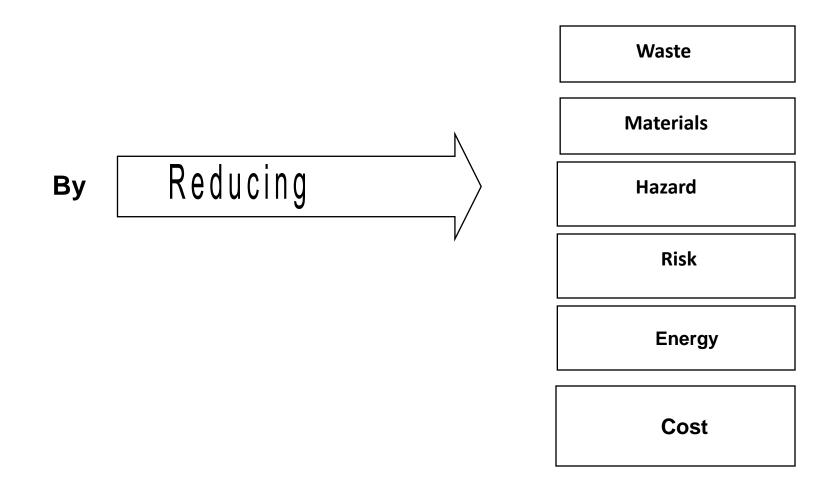
Implications of catalysis

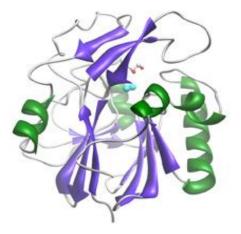

What all can a catalyst do?

Lowering of activation energy

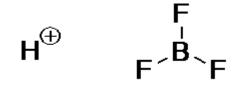
Stabilization of a reactive transition state

Bringing reactants together – proximity effect

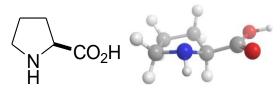

Role of catalysis in industry

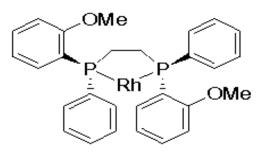


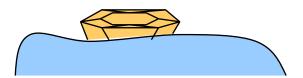
A catalyst can help in


- 1. Efficient utilisation of raw materials
- 2. Development of new materials and chemicals
- 3. Development of systems for environmental protection
- 4. Development of new sources of energy
- 5. Development of new processes and technologies

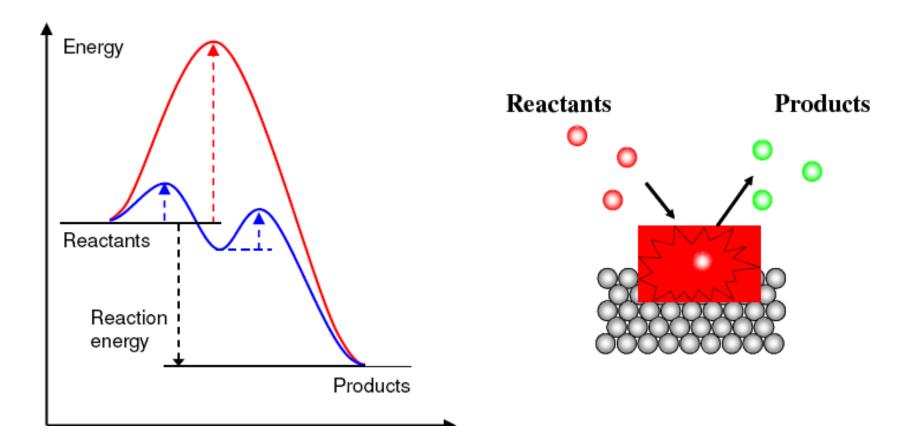
Catalysis can address many aspects of Green Chemistry

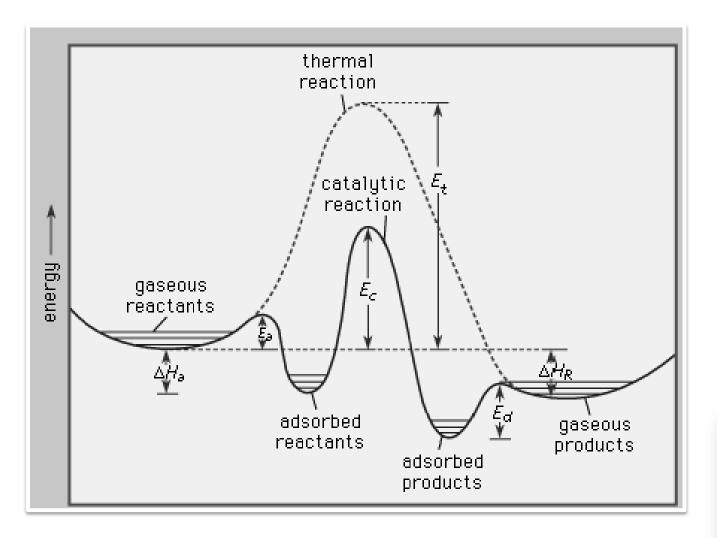

Types of catalysts


Homogeneous catalyst


Aluminosilicate

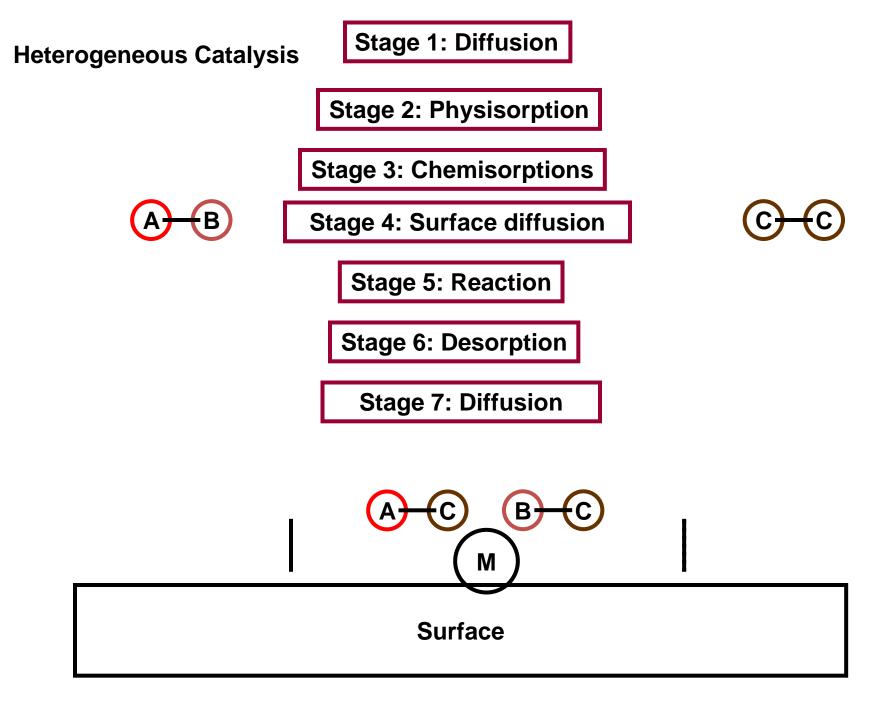
L-proline (organocatalyst)


(R,R)-DiPAMP-Rh (organometallic complex)



Enzyme (biocatalyst)

Supported catalyst


How does a catalyst work?

Heterogeneous Catalysis Must Always be Preceded by Adsorption

 E_c is activation energy for catalytic reaction; E_t is activation energy for thermal reaction; E_a is activation energy of adsorption of gaseous reactants; E_d is activatior energy of desorption of gaseous products; ΔH_a is heat of chemisorption of reactants; ΔH_R is heat of overall reaction.26

Heterogeneous versus Homogeneous

Heterogeneous

Homogeneous

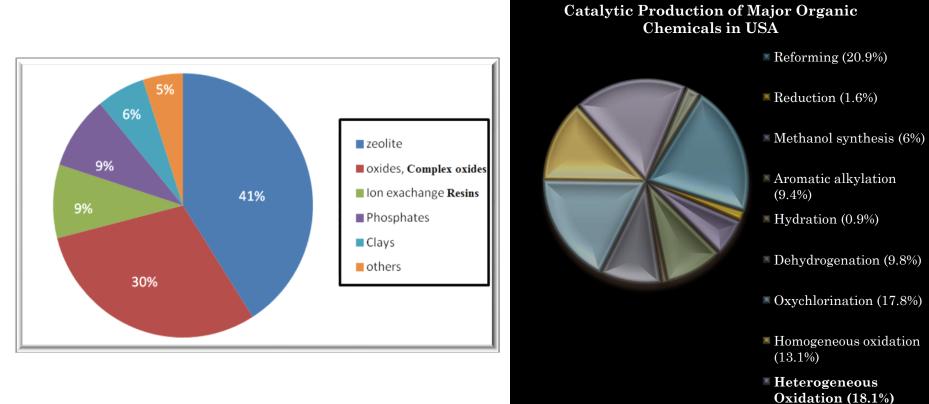
Readily separated ✓ Readily recycled / regenerated ✓ Long-lived ✓ Cheap ✓ Lower rates (diffusion limited) ¥ Sensitive to poisons × Lower selectivity × High energy process × Poor mechanistic understanding ×

Difficult to separate * Difficult to recover * Short service life * Expensive * Very high rates ✓ Robust to poisons ✓ Highly selective ✓ Mild conditions ✓

Ultimate goal: To combine the fast rates and high selectivities of homogeneous catalysts with the ease of recovery/recycle of heterogeneous catalysts A catalyst is an antidote for -

STOICHIOMETRIC BRONSTED ACIDS & BASES

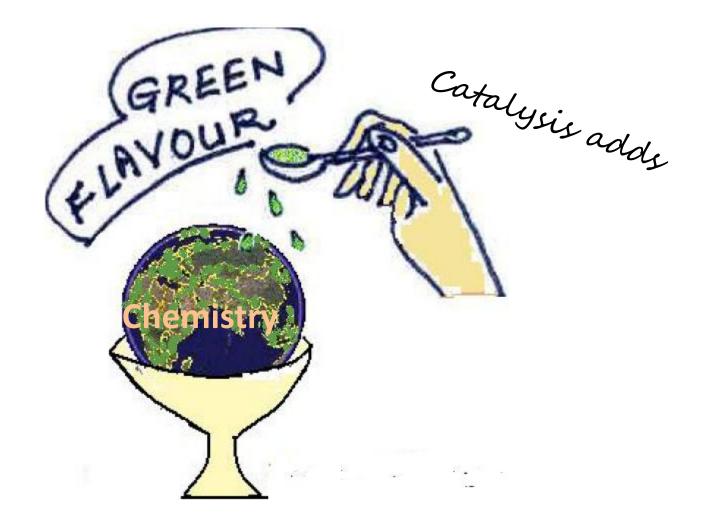
-**Aro**matic nitration - H_2SO_4 / HNO_3 Acid promoted rearrangements, e.g. Beckmann (H_2SO_4) Base promoted condensations, e.g. Aldol (NaOH, NaOMe)

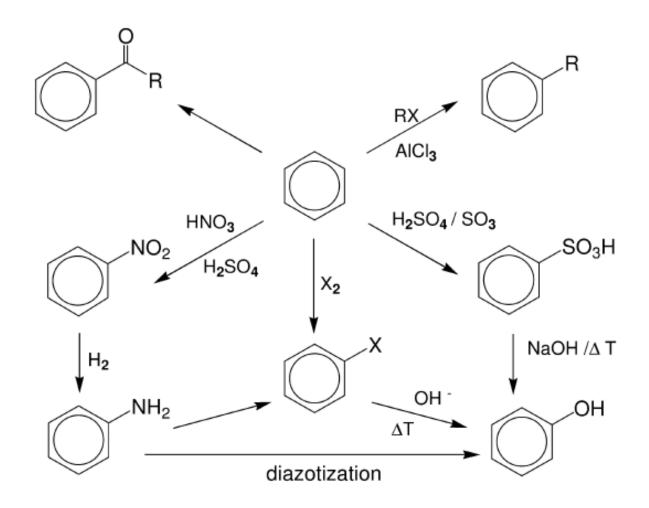

STOICHIOMETRIC LEWIS ACIDS

-Friedel-Crafts acylation (AICl₃, ZnCl₂, BF₃)

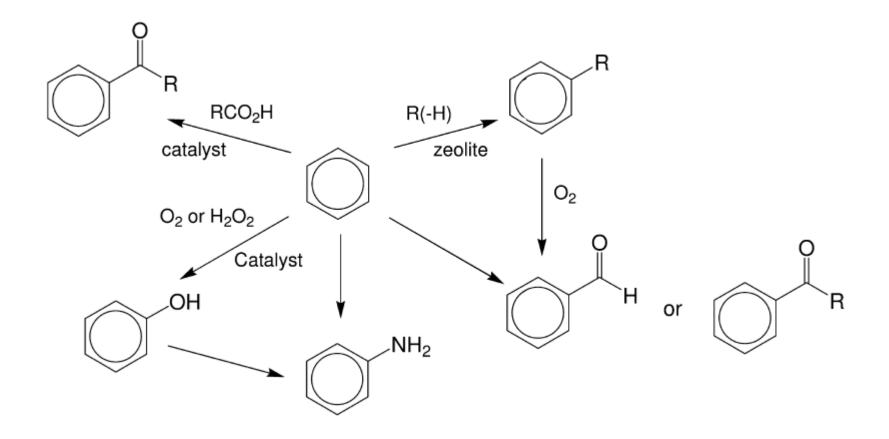
STOICHIOMETRIC OXIDANTS & REDUCTANTS

- Na₂Cr₂O₇, KMnO₄, MnO₂
- LiAlH₄, NaBH₄, Zn, Fe/ HCl

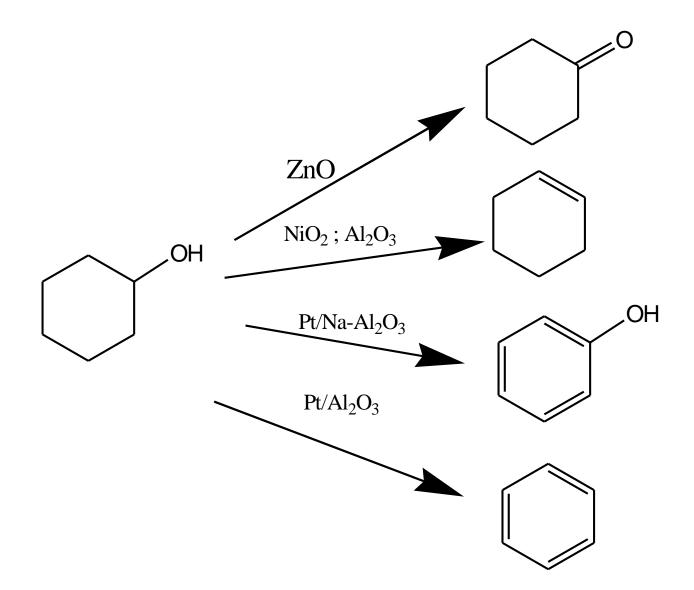

Industrially important Heterogeneous Catalysts

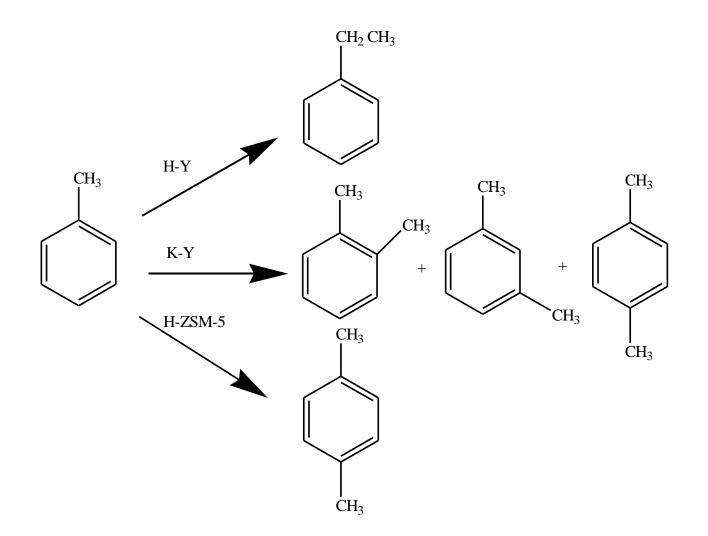


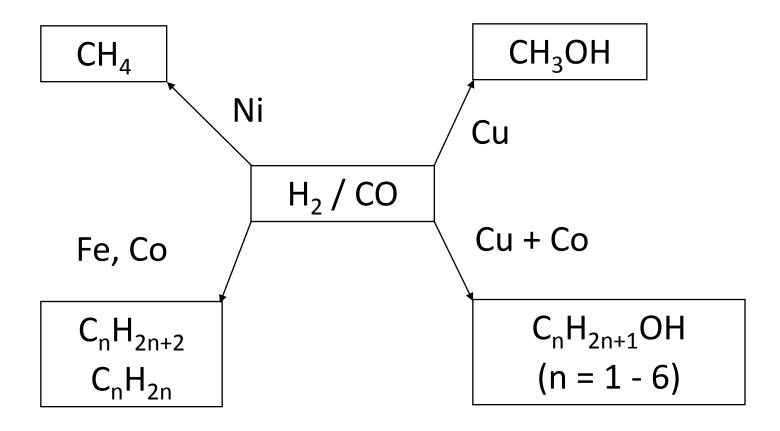
Homogeneous carbonylation (2.5%)

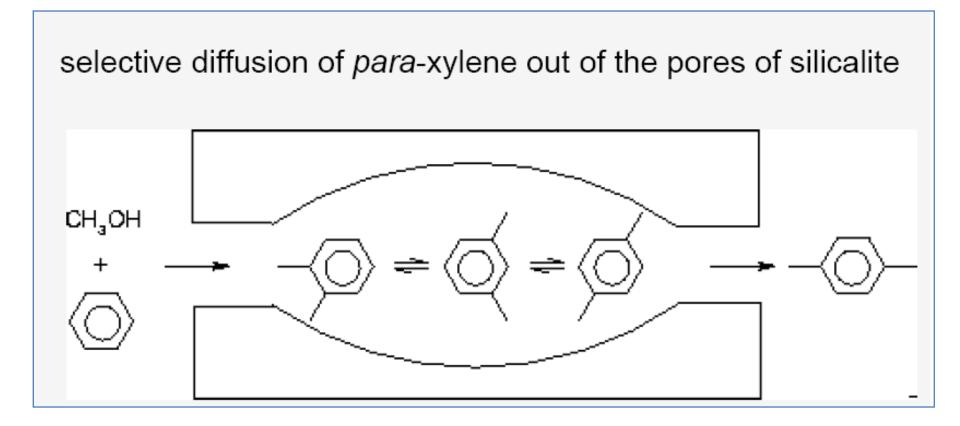

Catalysis in the Chemical Industry

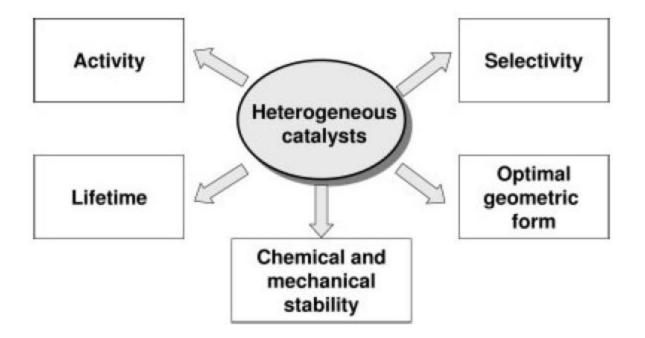
- Hydrogen Industry (coal,NH₃,methanol, FT synthesis, hydrogenations, fuel cell)
- Natural gas processing
- Petroleum refining
- Petrochemicals
- Fine Chemicals
 (pharmaceuticals, agrochemicals, fragrance, textile, coating, surfact ants)
- Environmental Catalysis




Green Aromatic Chemistry


Chemoselectivity


Regio-selectivity


An amazing outcome form two simple molecules

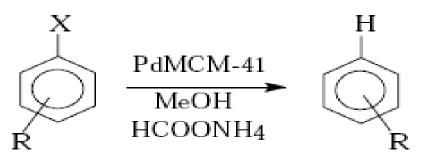
Product shape Selectivity

Performance parameters for industrial catalysts

Heterogeneous catalysis can make

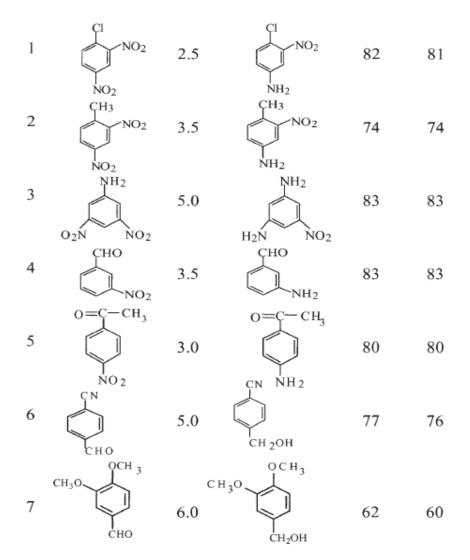
hazardous processes GREEN

Catalytic Transfer Hydrogenation


D-H - hydrogen donor A - hydrogen acceptor

Catalytic reduction using molecular hydrogen-

high diffusibility and high flammability and high pressure present considerable hazard.


This hazard is eliminated in transfer hydrogenation process.

Reduction of nitroarenes and reductive cleavage of azo compounds via catalytic transfer hydrogenation

[X=Cl, Br, I], [R=H, NH2, CH3, CH0]

P.selvam, S.K.Mohapatra, S.U.Sonavane, R.V.Jayaram Applied catalysis B: Environmental 49 (2004) 251-55

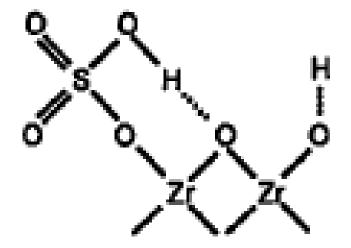
^a Reaction conditions: 100 mg catalyst, 20 mmol substrate, 20 mmol KOH, 20 ml propan-2-ol, 356 K; ^b Yield = [Conversion × Selectivity] / 100.

Catalysis by solid acids and bases

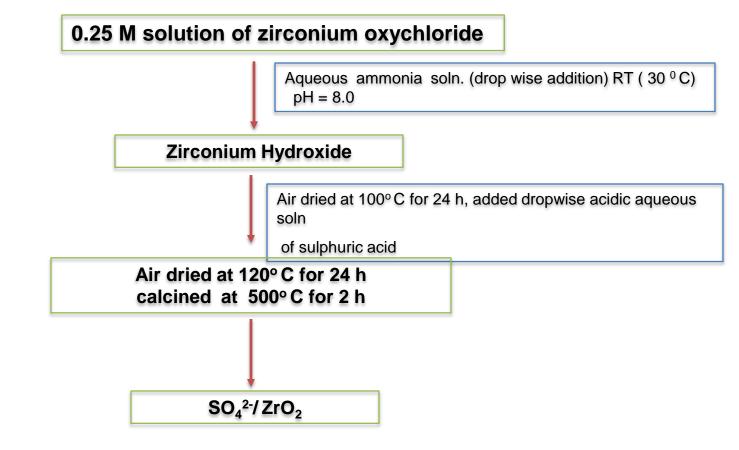
Conventional acid catalyzed processes

- Advantages
 - little technical risk
 - high yield and product quality
- Drawbacks
 - corrosiveness and toxicity of catalysts
 - safety problems
 - environmental impacts

Solid acid catalysts


Advantages

- inherently safe
- environmental friendly nature
- low catalyst consumption


Drawbacks

- rapid deactivation
- regeneration difficulties

Surface modified metal oxides as solid acid catalysts

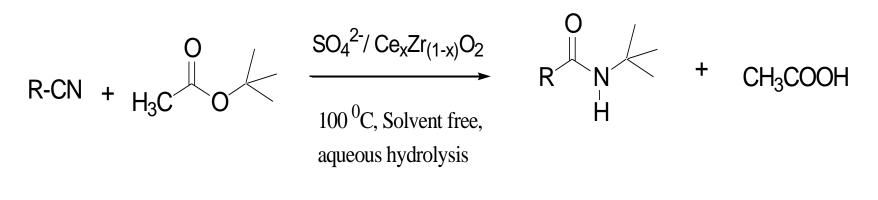
Preparation of surface modified metal oxides

Method can be extended to SO_4^2 -/Fe₂O₃, SO_4^2 -/CeO₂, SO_4^2 -

 $/TiO_2$

BET surface area and total acidity

Catalyst	BET Surface area (m ² .g ⁻¹)	Total acidity (mmol . g ^{- 1}) ^a
SO ₄ ²⁻ /Ce _{0.02} Zr _{0.98} O ₂	22	3.17
SO ₄ ²⁻ /Ce _{0.07} Zr _{0.93} O ₂	52	4.23
SO ₄ ²⁻ /Ce _{0.10} Zr _{0.90} O ₂	28	3.52
SO ₄ ²⁻ /Ce _{0.15} Zr _{0.85} O ₂	14	3.50


^aAll the catalysts were calcined at 650 ^oC

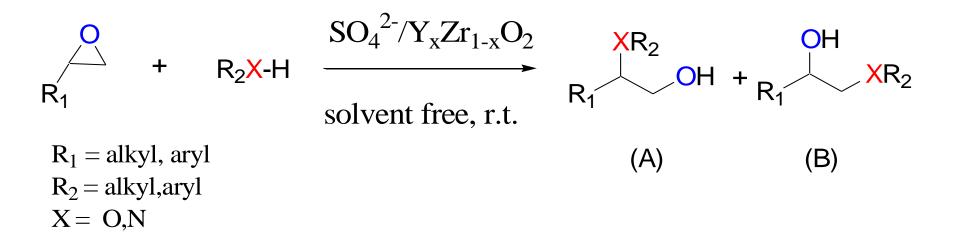
BET surface area and total acidity

Catalyst	BET Surface area (m ² .g ⁻¹)	Total acidity (mmol .g ^{- 1})
SO ₄ ²⁻ /Y _{0.04} Zr _{0.96} O ₂	32	1.23
SO ₄ ²⁻ /Y _{0.08} Zr _{0.92} O ₂	43	1.64
SO ₄ ²⁻ /Y _{0.12} Zr _{0.88} O ₂	52	1.93
SO ₄ ²⁻ /Y _{0.16} Zr _{0.84} O ₂	75	4.19
SO ₄ ²⁻ /Y _{0.24} Zr _{0.76} O ₂	29	2.65

All the catalysts were calcined at 500 °C

$SO_4^{2-}/Ce_xZr_{1-x}O_2$ catalyzed modified Ritter reaction using tertbutyl acetate with nitriles

R= alkyl,aryl

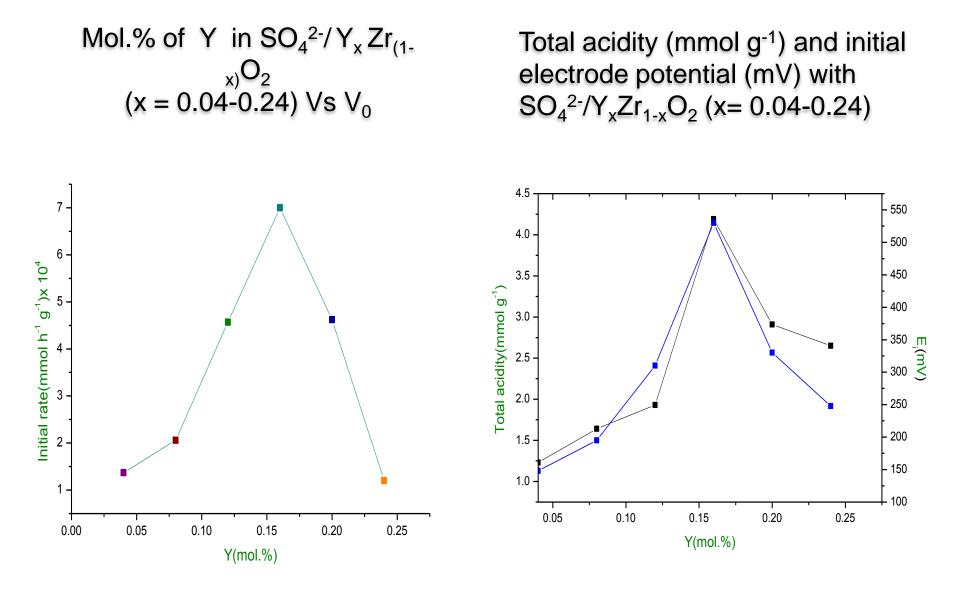

Sandeep S. Kahandal, Sandip R. Kale, Shamrao T. Disale and Radha V. Jayaram, *Chemistry Letters : 2012,41, 7, 738*; Sandeep S. Kahandal, Sandip R. Kale, Shamrao T. Disale and Radha V. Jayaram Synfacts 2012, 8,10,1161

Amidation of *tert*-butyl acetate with benzonitrile

Entry	Catalyst	$E_{ m i}$ (mV) ^b	Total acidity (mmol g ⁻¹) ^c	Yield (%) ^d	Initial rate (mmol h^{-1} gm ⁻¹) x 10 ³
1	-			N.R. ^e	-
2	CeO ₂	27	0.3	N.R. ^e	-
3	ZrO ₂	55	0.8	17	0.38
4	SO42-/CeO2	154	1.22	19	0.51
5	SO42-/ZrO2	168	2.07	27	0.95
6	SO42-/Ce0.02Zr0.98O2	440	3.17	54	1.05
7	SO ₄ ²⁻ /Ce _{0.07} Zr _{0.93} O ₂	560	4.23	78	1.65
8	$SO_4^{2-}/Ce_{0.10}Zr_{0.90}O_2$	450	3.52	64	1.38
9	SO42-/Ce0.15Zr0.85O2	440	3.50	58	1.25
10	SO42-/Ce0.17Zr0.83O2	360	2.75	45	1.13
11	SO42-/Ce0.20Zr0.80O2	295	2.01	31	0.92
12	SO42-/X0.04Zr0.96O2	148	1.23	18	0.60
13	SO42-/Y0.08Zr0.92O2	195	1.64	23	0.87
14	SO42-/X012Zr0188O2	310	1.93	25	0.97
15	SO42-/Y0.16Zr0.84O2	530	4.19	65	1.25
16	SO42-/Y0.20Zr0.80O2	330	2.91	45	1.42
17	SO42-/Y0.24Zr0.76O2	248	2.65	37	0.98
18	SO42-/CeO2 + SO42-/ZrO2	-	-	39	0.81

^aReaction conditions: benzonitrile (2 mmol), *tert*-butyl acetate (4 mmol), catalyst (20 wt%) , solvent free, 5 h., 100 °C ^bE_i- Inital electrode potential (mV),^c Total acidity values determined by n-butylamine potentiometric titration method, ^e No reaction, ^d Isolated yield, 52

II. Regioselective epoxide ring opening by alcohols



S. S. Kahandal, S. R. Kale and R. V. Jayaram, Catalysis Science and Technology 2012, 2, 1493–1499

Synthesis of β-alkoxy alcohols on solid acids

Entry	Catalyst	Time	Acidity (mmol /g) ^c	$E_{ m i} \ ({ m mV})^{ m d}$	Initial rate (mmol h ⁻¹ g ⁻ ¹) x 10 ⁴	Yield ^[b] (%)
1	-	5	-	-	-	-
2	ZrO ₂	5	0.81	55	-	-
3	SO4 ²⁻ /ZrO2	0.5	2.07	168	2.21	59
4	Y ₂ O ₃ - ZrO ₂	0.5	0.90	91	1.18	35
5	SO42-/Y0.04Zr0.96O2	0.5	1.23	148	1.37	42
6	SO4 ²⁻ /Y _{0.08} Zr _{0.92} O ₂	0.5	1.64	195	2.06	64
7	SO4 ²⁻ /Y _{0.12} Zr _{0.88} O ₂	0.5	1.93	310	4.57	83
8	SO4 ²⁻ /Y _{0.16} Zr _{0.84} O ₂	0.5	4.19	530	7.0	96
9	SO4 ²⁻ /Y _{0.20} Zr _{0.80} O ₂	0.5	2.91	330	4.62	79
10	SO42-/X0.24Zr0.76O2	0.5	2.65	248	1.20	52
11	SO4 ²⁻ /Ce _{0.02} Zr _{0.98} O ₂	0.5	3.17	440	2.22	65
12	SO4 ²⁻ /Ce _{0.07} Zr _{0.93} O ₂	0.5	4.23	560	4.98	87
13	SO4 ²⁻ /Ce _{0.10} Zr _{0.90} O ₂	0.5	3.52	450	3.57	74
14	SO4 ²⁻ /Ce _{0.15} Zr _{0.85} O ₂	0.5	3.50	460	2.82	69

 ${}_{a}{}^{a}$ Reaction conditions: styrene oxide (2 mmol), ethanol (2 mmol), solvent free, r.t (32 °C), ${}^{b}E_{i}$ - Inital electrode potential (mV), ^c Total acidity values determined by n-butylamine potentiometric titration method,

Catalysis by solid bases

There is a great demand for solid base catalysts uti in chemical processes. In particular, in the synthesis of fine and intermediate chemicals where E-factors are in the range 1 - 50.

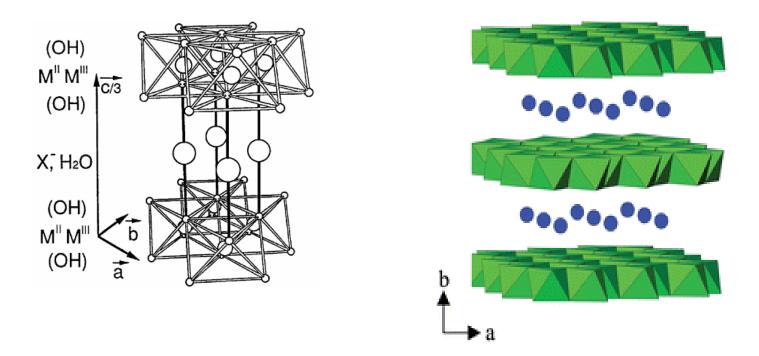
In most cases, basic sites appear on the surface as surface O atoms of metal oxides by removing H_2O and CO_2 from the surfaces.

Solid base catalysts

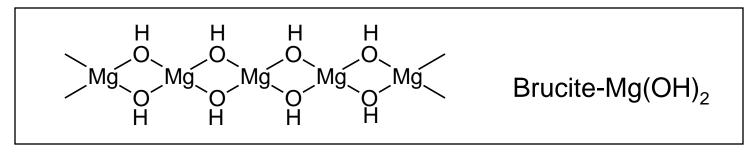
• Hydrotalcites – $[M(II)1-xM(III)x(OH)_2] \cdot A_{n-x/n} \cdot mH_2O.$

[M(II): Mg, Zn, Cu] [M(III): AI]

• Hydroxyapatites – $M_{10}(PO_4)_6(OH)_2$


M-HAP (M= Zn, Cu, Pd)

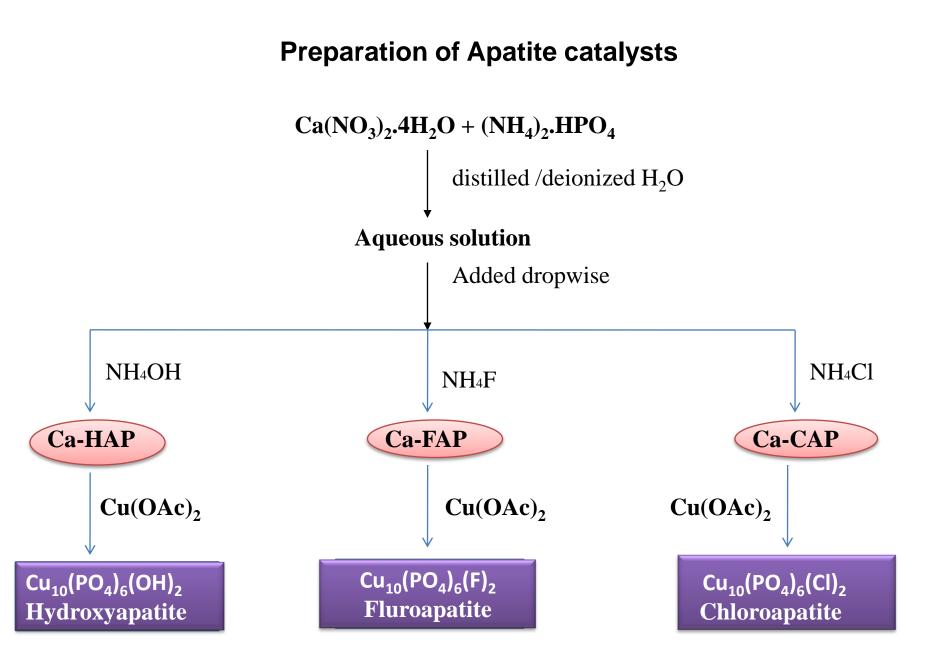
M-FAP (M= Cu)


M-CAP (M= Cu)

γ-Fe₂O₃/HAP

Structure of Hydrotalcite

 $[M(II)_{1-x}M(III)_{x}(OH)_{2}]^{x+}(A^{n-}_{x/n}).zH_{2}O$


Basicity measurement by phenol adsorption

$$q_e = \frac{(\text{Co-Ce}) \times V}{W}$$

- qe quantity of phenol adsorbed
- C initial conc. of phenol
- Ce- conc. of phenol at equilibrium
- W- wt. of the catalyst (gm)

Hydroxyapatites

- General formula: $M_{10}(PO_4)_6(OH)_2$
- Copper Hydroxyapatite Cu₁₀(PO₄)₆(OH)₂
- Hydroxyapatites are the main component of bones and teeth
- Have basic property and ion exchange ability.

One Pot synthesis of 2-amino-4H-chromene using hydrotalcite as a solid base

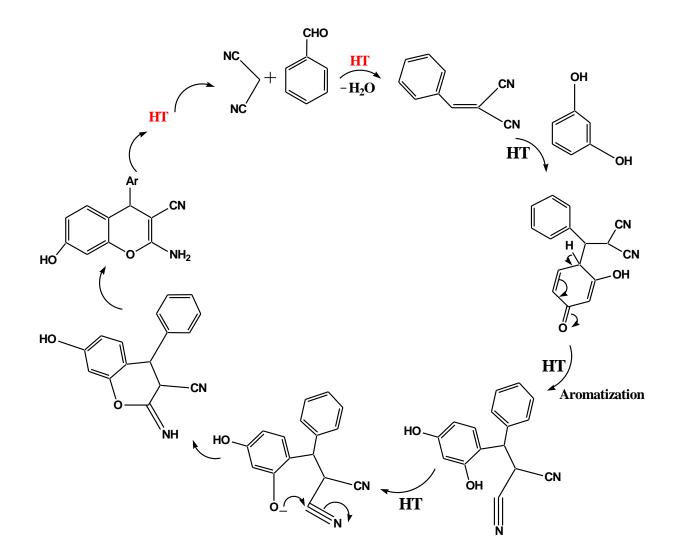
R, V.Jayaram, S.Kale ,Catalysis Science & Technology, 01 August 2013, Issue 8, Page 1857 to 2148

Characteristic features

Entry	Catalyst	Surface area m²/g	Basicity ^a (mmol/g)	Yield ^b (%)
1	Mg-Al :2.0 HT	146	0.087	65
2	Mg-Al :3.0 HT	185	0.095	72
3	Mg-Al :4.0HT	236	0.117	78
4	Mg-Al:5.0 HT	269	0.131	95

^a Determined by Phenol adsorption method^b Isolated YieldHT-Hydrotalcite

Application of the method to various substrates


No	Aldehydes сно	Chromene	Time(h)	Yield ^b (%)	M.P. (Obs.)/ ⁰ C
1		4a	4	95	234-236
2		4b	4	92	188-192
3	CI	4c	4.5	87	96-98
4	СНО	4d	4	95	176-178
5	O ₂ N CHO	4e	3	96	210-212
6 _c	СНО	4f	5	90	160-162

^a Reaction condition: resorcinol (3 mmol), malononitrile (3 mmol), aldehyde (3 mmol) and 15 wt% of Mg/Al HT (5:1) catalysts in 10 ml of water at 60°C.. ^b Isolated yields

Entry	Aldehydes	Chromene	Time(h)	Yieldb (%)	M.P. (Obs.)
7	НОСНО	4g	5.5	83	248-250
8	CHO	4h	6	79	112-114
9	Br	4i	5	85	224-226
10	СНО	4j	4.5	90	216-218
11	MeO OMe	4k	6	86	198-200
12	MeO CHO OMe	41	6	88	214-216

^a Reaction condition: resorcinol (3 mmol), malononitrile (3 mmol), aldehyde (3 mmol) and 15 wt% of Mg/Al HT (5:1) catalysts in 10 ml of water at 60°C. ^b Isolated yields

Reaction Mechanism

Conclusions

➢Hydrotalcite catalyzed one pot multicomponent reaction of resorcinol, malononitrile and aldehyde for the synthesis of 2-amino-4H chromene in wateras a green solvent.

➤The catalyst offers advantages like reusability, ease of separation of the products and high yields of the desired products.

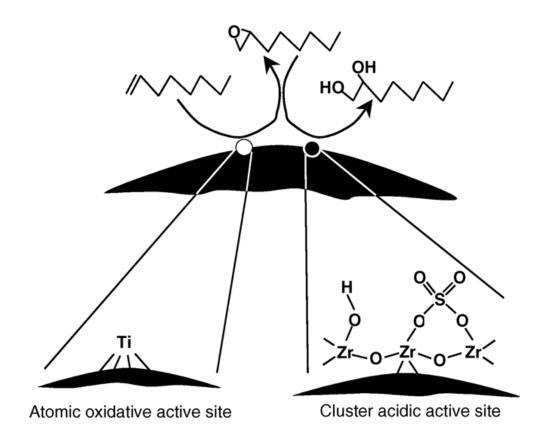
Multicomponent reaction of alkyne, halide and sodium azide catalyzed by copper apatite as a heterogeneous base catalyst in water.

Sandip R. Kale, Sandeep S. Kahandal, Shamrao T. Disale and Radha V. Jayaram* *Current Chemistry Letter, 2012, 1, 47-58.* **Bifunctional catalysis**

What is a bifunctional catalyst ?

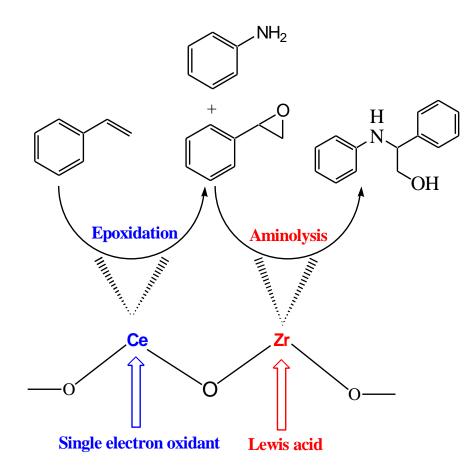
- Catalysts having more than one type of active sites which are capable of catalyzing more than one type of reaction
- These active sites can participate either in simultaneous or sequential reactions.
- Reduce the number of process steps.

Types of bifunctional catalysts

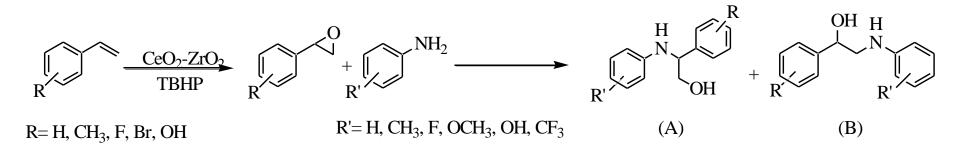

- Acid-Base
- Acid-Oxidation
- Acid-Reduction

- Base-Oxidation
- Base-Reduction
- Oxidation-Reduction

Recently used bifunctional catalysts-


- TiO₂ supported on SO₄²⁻-ZrO₂
- Pd supported on Heteropolyacids
- Pd supported on MgAI-Hydrotalcites

$TiO_2 - SO_4^2 / ZrO_2$



Nur et. al, Journal of Molecular Catalysis A: Chemical 241 (2005) 118-125

CeO₂-ZrO₂ as a **bifunctional** catalyst

Sequential approach for the synthesis of β-amino alcohols

K. D. Parghi, S. R. Kale and R. V. Jayaram, *Catalysis Science and Technology, 2012, in press*

CeO₂-ZrO₂ catalyzed sequential epoxidation-aminolysis^a

Entry	Amine	Amino alcohol	Conversion ^b (%) (A : B)
1 ^c	NH ₂	H N OH	60 (89:11)
2 ^c	NH ₂	H N OH	61 (90:10)
3 c	CI NH2	CI H OH	58 (92:8)
4 ^d	NH ₂	H N OH	57 (88:12)
5 d	NH ₂	H N OH	60 (91: 9)
6 ^d	F NH ₂	F H N OH	59 (92:8)

^aReaction conditions- styrene- 2 mmol, TBHP- 4 mmol, 4 mL CCl_4 , 20 wt% CeO_2 -Zr O_2 , 7 h at 80 °C; aniline – 2 mmol added after 7 h and continued for more 7.5 h ^bGC yield ^calkene = styrene, ^d alkene = 2-methyl styrene

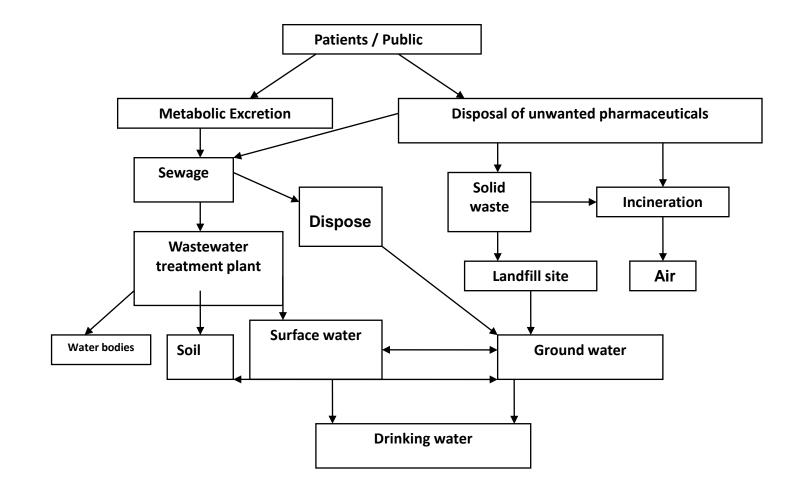
Conclusions

Solid acids and bases are green alternatives to conventional catalysts

They have tunable acidity/ basicity and hence can exhibit tremendous selectivity

They are robust catalysts and can effect reactions in varied solvents

They can be part of bifunctional system thereby reducing process steps


In short, soild acids and bases are mile stones in green and clean catalysis

Photocatalysis and Wastewater Treatment

Pharmaceuticals : An Environmental Burden!

- Although the amount of these pharmaceuticals in the aquatic environment is low, their continuous input may constitute in the long-term a potential risk for aquatic and terrestrial organisms.
- Many drugs enter the water bodies through various routes and are present in the ecosystem at levels well above their regulatory levels.

Possible routes of exposure to environment from medications (Gualtero, 2005)

Environmental and health impacts of pharmaceutical drugs

Major concerns

- 1. Promotion of pathogen resistance to antibiotics.
- 2. Disruption of endocrine systems.
- 3. Soil toxicity.
- Chronic toxic effects leading to irreversible changes in genome.Our focus is on two most commonly used drugs - DICLOFENAC and PARACETAMOL

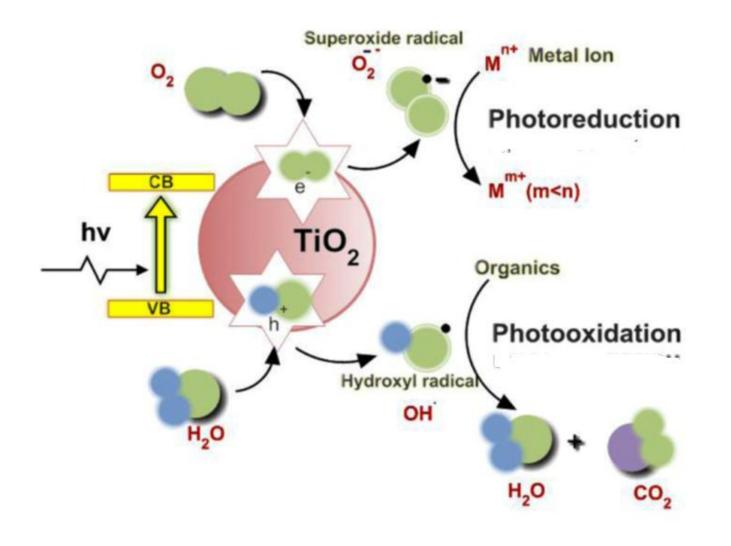
General Mechanism of Photocatalysis

1. Generation of electron and hole pair

 $\textbf{SC} \rightarrow \textbf{h^+ + e^{-}}$

2. Generation of hydroxyl radicals

 $h^+ + H_2O \rightarrow OH + H^+$

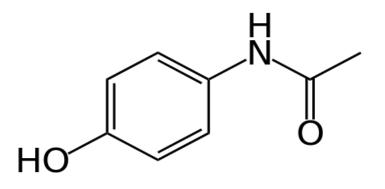

3. Reduction of dissolved oxygen by the photo generated electrons

$$e^- + O_2 \rightarrow O_2^{-}$$

4. Oxidation of pollutant

·OH + pollutant \rightarrow Intermediate compounds \rightarrow CO₂ +H₂O

TYPICAL PHOTOCATALYTIC PROCESS

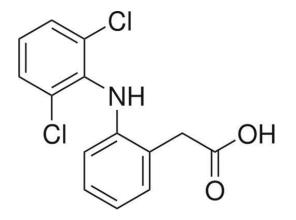

Green Advantages

≻The process uses renewable energy.

 \succ The reaction conditions for photocatalysis are mild, the reaction time is modest, and less chemical input is required.

Catalyst is non-hazardous

PARACETAMOL



Toxic Effects

➢ Approximately 58–68% of paracetamol is excreted from the body during therapeutic use.

> When used in excess, it may cause liver failure

DICLOFENAC

Toxic Effects

- Toxicity to liver, kidney
- Highly toxic to vultures leading to its complete ban in India and Pakistan for veterinary use.
- Toxic to many other animal species.

Paracetamol

Catalyst	Rate Constant, k (min ⁻¹)
Commercial TiO ₂	1.31 x 10 ⁻²
ZnO	1.98 x 10 ⁻²
$Ag - TiO_2(1\%)$	3.01 x 10 ⁻²
$Ag - TiO_2(2\%)$	4.10 x 10 ⁻²

.Dwoolkar, K. D. and Jayaram, R. V. "Pheotocatalytic degradation of Paracetamol", International Journal of Biotechnology, Chemical and Environmental Engineering, 2(1), **2013**, 27-32

Diclofenac

Catalyst	Rate Constant, k
	(min ⁻¹)
Commercial TiO ₂	1.01 x 10 ⁻²
ZnO	1.15 x 10 ⁻²
Ag – TiO ₂ (1%)	1.66 x 10 ⁻²
$Ag - TiO_2(2\%)$	2.15 x 10 ⁻²

Dewoolkar, K. D. and Jayaram, R. V. "Photocatalytic degradation of Diclofenac", International Journal of Research in Chemistry and Environment, 3(3), **2013**, 94-99.

It always seems impossible until it is done

