IntSciEng ICT/CE/SSE 1

Introduction Surface activity

Surfactants Surfactant effects Microemulsions

Applications Physical applications Reaction media

Summary

Interfacial Science & Engineering Introduction and Applications

Sunil S. Bhagwat Chemical Engineering Department Institute of Chemical Technology

2015

Institute of Chemical Technology

IntSciEng ICT/CE/SSB 2

Introduction Surface activity Surfactants Surfactant effects

Applications Physical applications Reaction media

Summary

Institute of Chemical Technology

IntSciEng ICT/CE/SSB 3

ntroduction Surface activity

Surfactants Surfactant effects Microemulsions

Applications Physical applications Reaction media

Summary

- Established in 1933 Industry's wish
- Chem Engg + Pharma + seven Chem Tech
- 250 graduate with Bachelors/yr (~1000)
- 100 to 150 complete Doctorates/yr (~700)
- Close to 200 complete post graduation/yr (~400)
- Highest Chemical Tech/ Engg publications in India
- 4th rank by publications per faculty across the globe
- 42% of Chem + Pharma Industry in India votes for ICT
- ~30% are enterpreneurs who's who in CI, Padma Awardees
- CII-AICTE award for best industry related institute

Outline

Introduction

Surface activity

- Surfactants Surfactant effects Microemulsions
- Applications Physical applications Reaction media
- Summary

- Surfactants
 - Surfactant effects
 - Microemulsions

- Applications
- Physical applications
- Reaction media

Fluids

IntSciEng ICT/CE/SSB 5

Introduction Surface activity

Surfactant effects Microemulsions

Applications Physical application Reaction media

Summary

Intermolecular interaction forces in fluids:

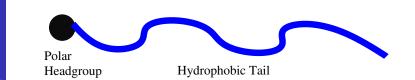
- van der Waal's attractive forces
- Hydrogen Bonding most important force in the most abundant solvent.
- Metallic bonds

in increasing order of magnitude.

- Molecules such as *n*-octane, *n*-dodecane are incapable of hydrogen bonding
- Consequently their presence in water results in unsatisfied hydrogen bonding needs of water molecules
- This increases the free energy of the solution and restricts the solubility of these molecules in water.

The Hydrophobic Effect

- IntSciEng ICT/CE/SSB 6
- Introduction Surface activity
- Surfactant effects Microemulsions
- Applications Physical applications Reaction media
- Summary


- The origin of the hydrophobicity of a molecule as a solute is more in the interactions between water molecules than solute molecules themselves.
- It is the strong desire of the water molecules to stay together that leads to pushing out of the hydrophobic molecules.
- In turn it is the strong hydrogen bonding between water molecules that brings them close together and causes them to resent the presence of other molecules in their midst.

IntSciEng

Surfactants

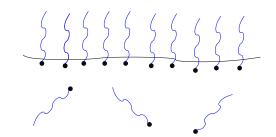
Surfactant

A typical surfactant molecule

The dichotomy of the affinity in a surfactant molecule is matched perhaps only by a slippery politician's fence sitting attitude!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Adsorption

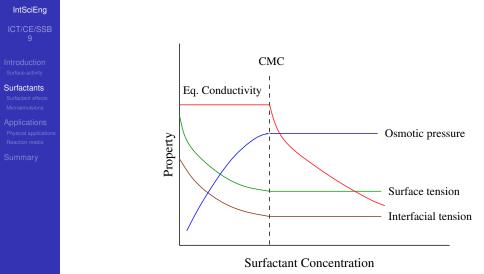

IntSciEng ICT/CE/SSB 8

Introduction Surface activity

Surfactants Surfactant effects Microemulsions

Applications Physical applicatio Reaction media

Summary



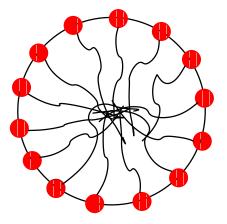
The first choice that the unwanted molecules have is to go to the 'wall' or the interface.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Unusual property changes

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Micelle


IntSciEng ICT/CE/SSE 10

Introduction Surface activity

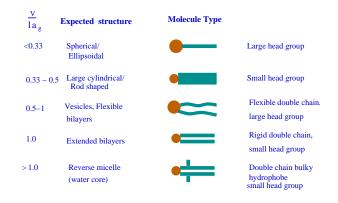
Surfactants Surfactant effects Microemulsions

Applications Physical application Reaction media

Summary

SCHEMATIC OF A NORMAL MICELLE

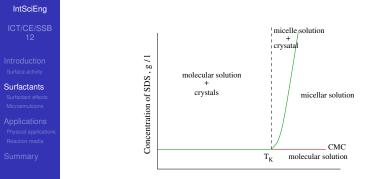
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ



IntSciEng

Surfactants

Aggregates


EXPECTED AGGREGATE CHARACTERISTICS

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Krafft Point

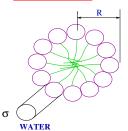
ABOVE THE KRAFT POINT, SOLUBILITY INCREASES RAPIDELY. THE SOLUTION THUS FORMED IS NOT A NORMAL MOLECULAR SOLUTION

ı.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

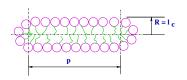
Micellar shapes

IntSciEng ICT/CE/SSE 13


Introduction Surface activity

Surfactants Surfactant effects

Applications Physical application Reaction media


Summary

SPHERICAL MICELLE

Interior ---- R<-1 Volume = N x V_c = 4 / 3 II R³ Area = N x σ = 4 II R² <u>Volume</u> = $\frac{R}{3} = \frac{V_c}{\sigma}$ Max. Spherical Micelle $\frac{V_c}{1 \sigma} = \frac{1}{3} =$

CYLINDRICAL MICELLE

Volume = N x V_c=4/3 Π R³+ Π R²P Area = N σ = 4 Π R²+2 Π RP

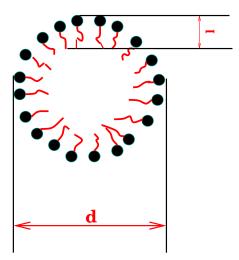
And $R = l_c$

f = 1/3 to 1/2

For infinite cylinder f= 1/2

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Core vs skin


IntSciEng ICT/CE/SSE 14

Introduction Surface activity

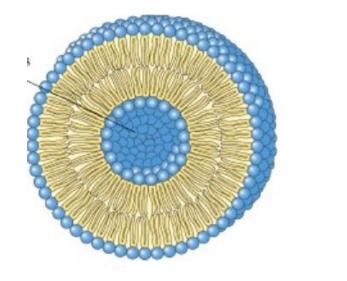
Surfactants Surfactant effects Microemulsions

Applications Physical application Reaction media

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Vesicles


IntSciEng ICT/CE/SSE 15

Introduction Surface activity

Surfactants Surfactant effects Microemulsions

Applications Physical application Reaction media

Summary

IntSciEng ICT/CE/SSE 16

Introduction Surface activity

Surfactants Surfactant effects Microemulsions

Applications Physical application Reaction media

Summary

Tail- hydrocarbon, flurohydrocarbon

- Branching
 - Straight chain
 - Branched
- Aromaticity
 - with aromatic ring
 - without aromatic ring
- Origin
 - Natural based
 - Petroleum based

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

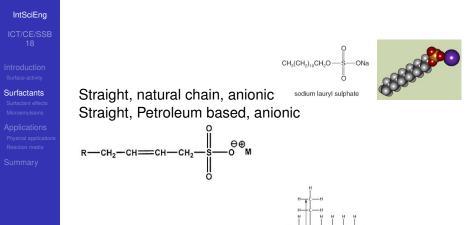
IntSciEng ICT/CE/SSB 17

Introduction Surface activity

Surfactants Surfactant effects Microemulsions

Applications Physical applications Reaction media

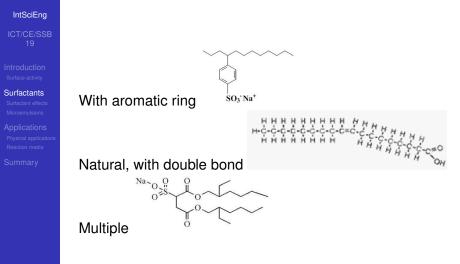
Summary


• Head group

- Ionic
 - Cationic
 - Anionic
 - Zwitterionic
- Non-ionic
 - Origin:
 - Natural : Sugar based
 - Petroleum :Ethylene oxide based

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Solubility
 - Oil soluble (low HLB)
 - Water soluble (high HLB)

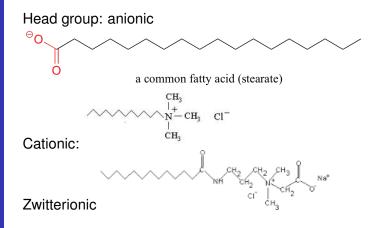


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Petroleum based, Branched

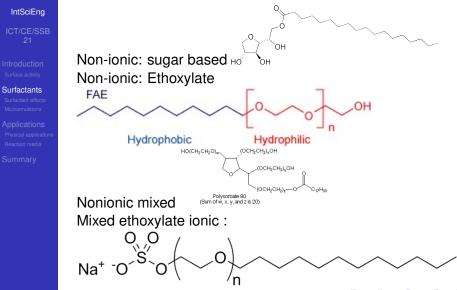
・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.


IntSciEng ICT/CE/SSB 20

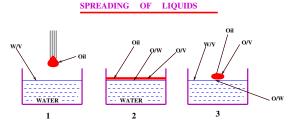
Introduction Surface activity

Surfactants Surfactant effects Microemulsions


Applications Physical application Reaction media

Summary

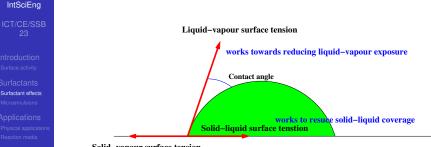
◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●


▲ロト▲聞ト▲臣ト▲臣ト 臣 のへで

IntSciEng

Surfactant effects

Spreading


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

2) E= A
$$\gamma^{0/w}$$
 + A $\gamma^{0/v}$
3) E = (A-a₂) $\gamma^{w/v}$ + a $\gamma^{0/v}$ + a₂ $\gamma^{0/w}$
a₁, a₂ << A
 \approx A $\gamma^{w/v}$

State of lower E is preffered

Contact angle

Solid-vapour surface tension

works to reduce solid-vapour exposure

Force balance (Young-Dupre equation):

$$\gamma^{LV}\cos heta=\gamma^{SV}-\gamma^{SL}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Powder wetting

- IntSciEng ICT/CE/SSB 24
- Introduction Surface activity
- Surfactants Surfactant effects Microemulsions
- Applications Physical applications Reaction media
- Summary

- Powder wetting can be measured indirectly instead of contact angle.
- Washburn equation relates the rate of uptake of a liquid in packed powder to the contact angle.
- Two measurements one with a low surface tension liquid (typically hexane) and one with the solution are required.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Emulsions

- IntSciEng ICT/CE/SSB 25
- Introduction Surface activity Surfactants Surfactant effects
- Applications
- Physical applications Reaction media
- Summary

- Dispersion of two incompatible phases
- Higher proportion continuous (exceptions)
- Stability limited (kinetic and not thermodynamic stability)
- Destabilization
 - Creaming (density, viscosity)
 - Ostwald ripening (Kelvin equation)
 - Wall breaking (Gibbs elasticity, surface viscosity)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Foams

IntSciEng ICT/CE/SSB 26

- Introduction Surface activity Surfactants
- Surfactant effects Microemulsions
- Applications Physical applications Reaction media
- Summary

- Dispersion of gas in liquid
- Foam formation ability foamability
- Foam stability
- Dynamics of surface tension (interfacial tension for emulsions)
- Bubble formation and coalescence before stabilization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Rupture of wall (surface elasticity, surface viscosity)
- Foamability measurement

Microemulsion types

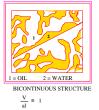
IntSciEng ICT/CE/SSE 27

Introduction Surface activity Surfactants Surfactant effects

Microemulsions

Applications Physical application Reaction media

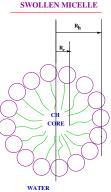
Summary


WATER IN - OIL MICROEMULSION DROPLET

V/al > 1

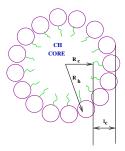
OIL - IN - WATER MICROEMULSION DROPLET

V/al < 1


Microemulsion vs swollen droplet

IntSciEng ICT/CE/SSB 28

Introduction Surface activity Surfactants Surfactant effects Microemulsions


Applications Physical applicatio Reaction media

Summary

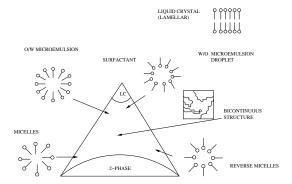
N V_c=4/3 Π (R³ - R_c³) N σ = 4 Π R² R - R_c = l_c V_c /lc σ <= 1/2

MICROEMULSION DROPLET

 $V_{c} / lc \sigma = 1 / 2$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣A@

Structures in O-W-S systems



Introduction Surface activity Surfactants

Surfactant effects Microemulsions

Applications Physical application Reaction media

Summary

Nano-structuring in surfactant solutions

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Relative Thickness of Interphase and interfacial area

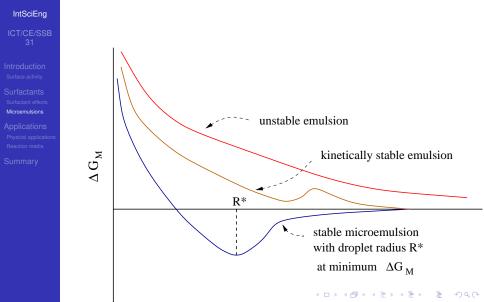
IntSciEng ICT/CE/SSB 30

Introduction Surface activity

Surfactants Surfactant effects Microemulsions

Applications Physical application Reaction media

Summary


	Diameter	Interphase	Volume
	(nm)	(nm)	(%)
Macroemulsions	~ > 1000	2.5	1.5
Microemulsions	10-100	2.5	15-85
Micelles	~ 2.5	2.5	~ 100

	Interfacial area (cm ² /cm ³)
L/L dispersions (5 mm size)	~ 1
Emulsion (50 μ m size)	~ 10
Microemulsions (10 nm size)	~ 10 ⁶

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Free energy minimum

Other free energy source

IntSciEng ICT/CE/SSB 32

Introduction Surface activity Surfactants Surfactant effects Microemulsions

Applications Physical application Reaction media

Summary

MICROEMULSIONS HAVE VERY LARGE OW INTERFACIAL AREA. TO ACHIEVE THIS, V^{O/W} SHOULD BE VANISHINGLY LOW. EQUILIBRIUM SIZE IS ATTAINED WHEN THE

CHANGE IN FREE ENERGY DUE TO CHANGE IN SIZE IS ZERO .

TOTAL FREE ENERGY HAS TWO TERMS: (1) SURFACE FREE ENERGY V.A. (2) ENTROPY OF MIXING - REXIMX: AGE - TAS = AG VOL. FRACTION = Ø NO. OF DROPLETS /UNIT VOLUME = Ø/IT d³ NO. OF SOLVENT HOLECULES / UNIT VOL: (1-0) NS V.

IntSciEng ICT/CE/SSE 33

Surface activity Surfactants Surfactant effects Microemulsions Applications

Physical applicatio Reaction media

Summary

$$\begin{array}{rcl} & \chi droplets &= \displaystyle \frac{\phi/(\Pi d^{2})}{(1-\phi)N/M} + \displaystyle \frac{\phi}{(\Pi d^{3})} &\approx \displaystyle \frac{V\pi}{N^{3}} & \frac{\phi}{\Pi d^{3}} \\ & X_{\text{solvent molecules}} &= 1 - X_{\text{droplets}} &\approx 1 \\ & \text{Entropy} &= -R \left[\displaystyle \frac{V_{\text{m}}}{N} & \frac{\phi}{\Pi d^{3}} \ln \left(\displaystyle \frac{V_{\text{m}}}{N} & \frac{\phi}{\Pi d^{3}} \right) + 1 \ln 1 \right] \\ & Surface free energy &= \displaystyle \frac{\gamma \circ N}{N} & \frac{\phi}{\Pi d^{3}} & \Pi d^{2} & \frac{1}{\Pi d^{3}} + 1 \ln 1 \\ & & \Pi d^{3} & \frac{1}{\Pi d^{3}} & \frac{\phi}{\Pi d^{3}} + 1 \ln 1 \\ & & \Pi d^{3} & \frac{1}{\Pi d^{3}} & \frac{\phi}{\Pi d^{3}} \\ & \text{Total free energy} &= \displaystyle \frac{\gamma \circ N}{R} & \frac{\phi}{R} & \frac{1}{\pi} d^{3} \\ & & = -\left(-RT \cdot \frac{\phi}{M} V_{\text{m}} + \ln \left(\frac{V_{\text{m}}}{N} \cdot \frac{\phi}{\Pi d^{3}} \right) \right) & + \displaystyle \frac{G\phi}{d} \cdot \frac{\gamma \circ N}{M} \\ & & \Pi d^{3} \\ & & \Pi d^{3} \\ & & \\ & & Solving This FOR A d \sim Sonm, \phi = 0.05 \\ & & \displaystyle \gamma \circ N & \text{HAS To BE} & \sim 0.001 \, dyna \int un \end{array}$$

...

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

Microemulsions

IntSciEng ICT/CE/SSB 34

- Introduction Surface activity Surfactants
- Surfactant effects Microemulsions
- Applications Physical application Reaction media
- Summary

- A microemulsion is a single phase composed of water, a water immiscible oil, surfactant and cosurfactant; which is optically isotropic and thermodynamically stable.
- It appears transluscent or transparent to visible light. In the case of oil -in -water microemulsions, the oil forms extremely small droplets of size in the range of 10-100nm that are surrounded by surfactant molecules.
- The criterion generally accepted for the size of these droplets is that the diameter should be less than 1/4th of the wavelength of visible light.
- These 'microdroplets' consist of a cluster of a few hundred molecules or less and can, therefore, behave very differently from macroemulsion droplets.

Applications of surfactants and microemulsions

IntSciEng ICT/CE/SSB 35

Introduction Surface activity Surfactants Surfactant effects

Applications Physical applications Reaction media

Summary

Formulations where there is a need for mixing hydrophobic and hydrophillic substrates

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Paints
- Pharmaceuticals
- Dyeing
- Fuel additives
- Food additives
- Pesticides
- Petroleum

Applications of Surfactants

IntSciEng ICT/CE/SSB 36

Introduction Surface activity

Surfactants Surfactant effects Microemulsions

Applications Physical applications Reaction media

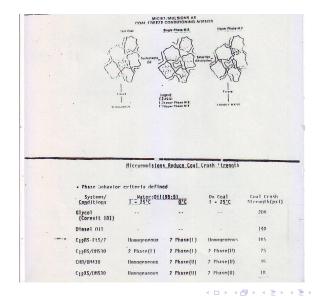
Summary

- Pulp and paper: wetting, waste de-inking, resin removal
- Mineral and metallurgical engineering: hydrometallurgy, coal antidusting agents, coal crushing
- Leather: degreasing, pigment formulations
- Cosmetics: formulations
- Printing: stable ink for jet printing
- Safety and pollution abatement: fire fighting foams, absorbent for pollutants

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Civil engineering: additives for water reduction, plasticizers, and superplasticizers
- Electronics: special surface treatment of semiconductors
- Explosives: formulations

Coal antidusting



Introduction Surface activity Surfactants Surfactant effects

Microemulsions

Applications Physical applications Reaction media

Summary

Sac

Textile applications:

IntSciEng ICT/CE/SSB 38

Introduction Surface activity Surfactants

Surfactant effects Microemulsions

Applications Physical applications Reaction media

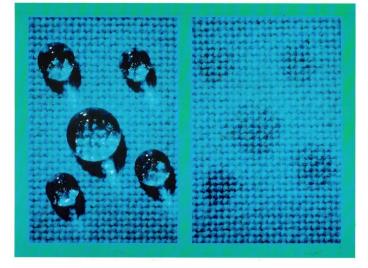
Summary

- Scouring of wool: wool grease, soil and salts
- Scouring of cotton: Hemicellulose and lignin
- Scouring of synthetics: Oligomer removal

And

- Spin finishes: at all stages
- Dyeing: Wetting and dispersing agents
- Softening: nonionic and cationic surfactants
- Laundering: simultaneous removal of hydrophobic and hydrophilic soil

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

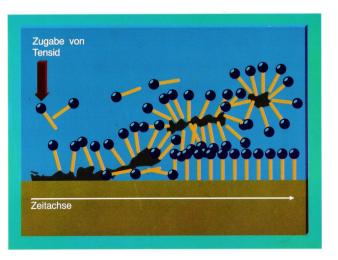

Fabric wetting

IntSciEng ICT/CE/SSB 39

Surface activity Surfactants Surfactant effects Microemulsions

Applications Physical applications Reaction media

Summary


Detergency

IntSciEng ICT/CE/SSB 40

Surface activity Surfactants Surfactant effects Microemulsions

Applications Physical applications Reaction media

Summary

Pharmaceutical Technology

- IntSciEng ICT/CE/SSB 41
- Introduction Surface activity
- Surfactants Surfactant effects Microemulsions
- Applications Physical applications Reaction media
- Summary

- Prolonged action and protection of biodegradable molecules
- Better handling and ease of preparation
- Water insoluble drugs in aqueous media
- Incorporation of high oxygen carrying capacity substances

- Faster diffusion rates
- Better penetration ability
- Decreased toxicity and improved potency

Pesticides and drug delivery

IntSciEng ICT/CE/SSB 42

- Introduction Surface activity
- Surfactants Surfactant effects Microemulsions
- Applications Physical applications Reaction media
- Summary

- Controlled release formulations, gels
- Many bioactives are insoluble/ rendered inactive in water

- Rapid diffusion
- Targetted delivery (bacteriophage)
- Wetting of foliage
- Artificial blood- (fluorocarbon)
- Models of cell wall

Lubricants and additives

IntSciEng ICT/CE/SSB 43

Introduction Surface activity

Surfactants Surfactant effects Microemulsions

Applications Physical applications Reaction media

Summary

- Combustion products are acidic and hence corrosive
- Alkaline particles can neutralise these
- Particles should aid in lubrication
- neutralised products tobe non-corrosive and inobtrusive

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Prepared in reverse microemulsions acting as 'Microreactors'

Agrochemicals

IntSciEng ICT/CE/SSB 44

Introduction Surface activity

Surfactants Surfactant effect: Microemulsions

Applications Physical applications Reaction media

Summary

Upper half leaf : wetting

Upper half of the leaf - wetting.

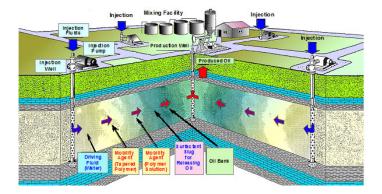
Petroleum Recovery

- IntSciEng ICT/CE/SSB 45
- Introduction Surface activity Surfactants Surfactant effects Microemulsions
- Applications Physical applications Reaction media
- Summary

- Microemulsion flooding
 - low interfacial tension aids oil displacement optimal salinity- maximum recovery efficiency o/w, w/o, middle phase - all useful e.g. Na petroleum sulfonates, dialkyl quaternery ammonium compounds
- Drilling fluids: high viscosity, good heat capacity

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Plugging agents


Petroleum recovery

Introduction Surface activity Surfactants Surfactant effects Microemulsions

Physical applications Reaction media

Summary

・ロト ・聞ト ・ヨト ・ヨト

э

Fuels

IntSciEng ICT/CE/SSB 47

Introduction Surface activity

Surfactants Surfactant effects Microemulsions

Applications Physical applications Reaction media

Summary

Gasoline, diesel, fuel oils microemulsions

- Reduced peak temperature leading to lower NO_x emission
- Higher flash point
- controlled pool burning
- Safety in storage and transport without affecting atomised burning in engine
- Can water help fuel burn? Yes! Better fuel atomization

Advantages of Surfactant media for reactions

IntSciEng ICT/CE/SSB 48

- Introduction Surface activity
- Surfactants Surfactant effects Microemulsions
- Applications Physical application Reaction media
- Summary

- Enhancement in overall reaction rate
- Favorable orientation of molecules
- Manipulation of Regio- and Stereo selectivity

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Localised concentration of reagent
- Change in locale of reaction

Solubilization and Orientation

- IntSciEng ICT/CE/SSB 49
- Introduction Surface activity
- Surfactants Surfactant effects Microemulsions
- Applications Physical application Reaction media
- Summary

- Micellar solubilization of phenols is greatly affected by position of the substituent group in aromatic ring
- Difference in solubilities can be explained in terms of the orientation of molecule adsorbed on the micelle
- The solubilization with specific orientation is useful in micellar regioselective synthesis

Alkaline Hydrolysis

- IntSciEng ICT/CE/SSB 50
- Introduction Surface activity Surfactants Surfactant effects Microemulsions
- Applications Physical application Reaction media
- Summary

- 2,4-dinitrochlorobenzene by cationic micelles sp. rate increase 10-100 fold
- p-nitrophenyl diphenyl phosphate hexadecane in water microemulsion stabilized by CTAB & 1-butanol.
- p-nitrophenylbenzoate CTAB & sodium dodecyl sulphate microemulsions.
- 2,4 dichlorophenyl benzoate sp. rate increases by 45 fold

Oxidation

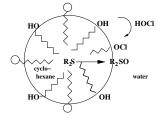
IntSciEng ICT/CE/SSE 51

Introduction Surface activity Surfactants

Surfactant effect Microemulsions

Applications Physical application Reaction media

Summary


Half mustard oxidation by tert-butyl hydroperoxide & hypochlorite

CICH₂CH₂-S-CH₂ CH₂ CI

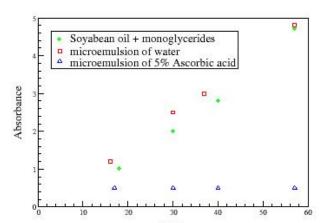
MUSTARD

СH₃CH₂-S-СӉ СӉ СІ

Half MUSTARD

Destruction is very rapid in microemulsion

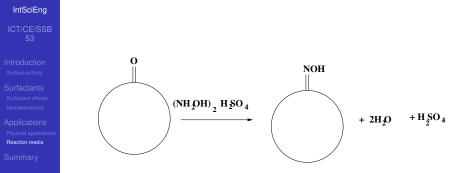
Oxidation - prevention


IntSciEng ICT/CE/SSB 52

Introduction Surface activity Surfactants Surfactant effects

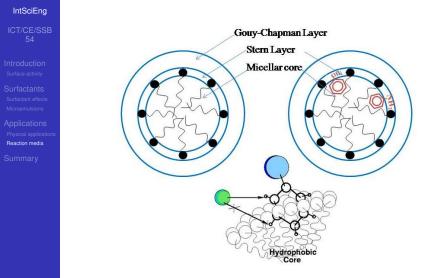
Applications Physical applicatio Reaction media

Summary


Oxidation of fats results in rancidity. Most antioxidants are oil insoluble

900

Oximation of cyclododecanone



600 fold enhancement in the specific rate of the reaction in microemulsions of SLS/n-butanol

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Reactions

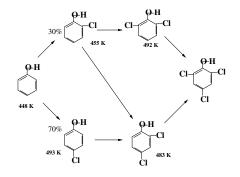
The chlorination of aromatic compounds

- IntSciEng ICT/CE/SSB 55
- Introduction Surface activity Surfactants Surfactant effects
- Applications Physical application Reaction media
- Summary

- Substituted benzenes show strong orientation effects for this electrophilic substitution reactions
 Deactivating -NO₂ meta- directing
 Activating -CH₃ ortho- para- directing
 Activating -CI ortho- para- directing
 Activating - OH ortho- para- directing
- Different agents for chlorination include chlorine gas, sodium or calcium hypochlorite, phosgene, sulfuryl chloride, HCl-O₂, HCl-H₂O₂

IntSciEng

Phenol Chlorination


ICT/CE/SSB 56

Surface activity Surfactants Surfactant effects Microemulsions

Physical application Reaction media

Summary

Excess chlorination -> Trichlorophenol

Close boiling points -> Isolation difficult

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Orientation

IntSciEng ICT/CE/SSB 57

Introduction Surface activity Surfactants Surfactant effects Microemulsions

Applications Physical application Reaction media

Summary

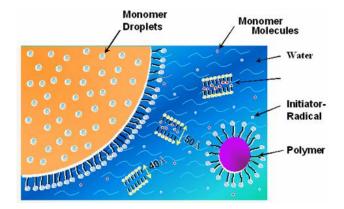
Orientation of phenol in micelles indicated by NMR shift

Medium	<i>para</i> -shift	<i>meta</i> -shift	<i>ortho</i> -shift
0.25M SDS	40	30	10
0.1M CTAB	60	40	05
0.1M CPC	100	70	20

Phenolic -OH is a polar group affeted by pH. micellised phenol : *ortho*-position exposed while the *para*-position burried deep in the micelle NMR shift for the *ortho*- position is more than 3 times larger than that for the *para*-position Our results: *ortho*- / *para*- ratio of upto 8 in dichloromethane solvent, upto 12 in aqueous medium with $HCI - H_2O_2$ reagent.

Emulsion polymerisation

IntSciEng ICT/CE/SSB 58


Introduction Surface activity Surfactants Surfactant effects Microemulsions

Physical applications Reaction media

Summary

Dual role of surfactant in emulsion polymerisation

- 1. Formation of initial monomer emulsion
- 2. Stabilization of growing and final polymer particles

Types of Emulsion polymerisation

- IntSciEng ICT/CE/SSB 59
- Surface activity Surface activity Surfactant effects Microemulsions Applications Physical applications Reaction media

Summary

TypesParticle sizeMacroemulsion $1-100 \ \mu m$ Seeded dispersion $200-330 \ nm$ Miniemulsion $50-500 \ nm$ Microemulsion $10-50 \ nm$ Latex is an industrially important product forme.g. Paints, Tyres, paper coatings, textile binders adhesivesetc.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Paints and Surface coatings

IntSciEng ICT/CE/SSB 60

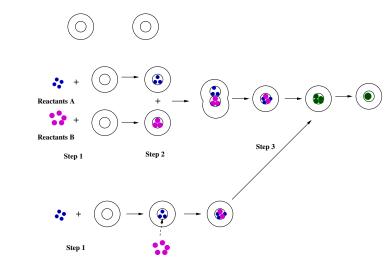
Introduction Surface activity Surfactants Surfactant effects Microemulsions

Applications Physical applications Reaction media

Summary

Both water and solvent based systems have shortcomings while microemulsions combine advantages of both¹

- Higher molecular weight material than water borne
- Non polluting compared to solvents
- High gloss film with strain resistance since system remains isotropic throughout evaporation
- Excellent penetration


・ロト・西ト・山田・山田・山下

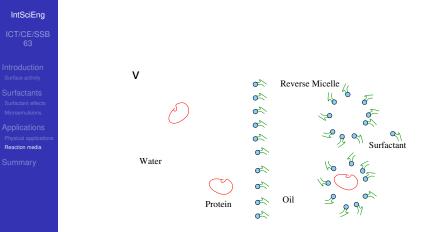
IntSciEng

Reaction media

Growth of ultrafine particles in microemulsions

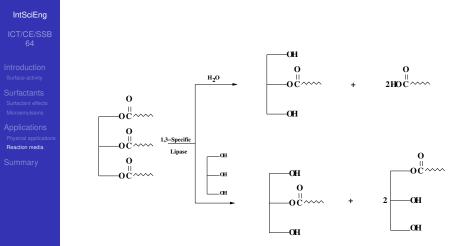
▲□▶▲□▶▲□▶▲□▶ □ のQ@

Enzymatic Reactions

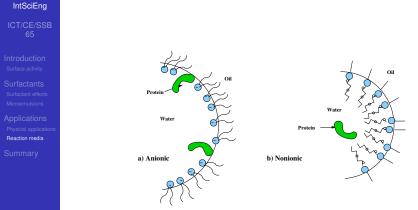

- IntSciEng ICT/CE/SSB 62
- Introduction Surface activity Surfactants Surfactant effects Microemulsions
- Applications Physical applications Reaction media
- Summary

Enzymes are inactive in hydrocarbon environment

- Enzyme activity is retained in W/O microemulsion, sometimes enhanced
- Substrate (e.g. steroids) is solubilized in the continuous phase of the microemulsion
- Enzyme is trapped in the water pools
- Large interfacial area between the two helps in reaction


Protein solubilization in reverse micelles

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで


Enzymatic glycerolysis: synthetic coco-butter

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへ⊙

Protein location in microemulsion

Enzymatic activity is higher in (a) owing to better enzyme-substrate contact.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Nano-structured media for chemical reactions

IntSciEng ICT/CE/SSB 66

Introduction Surface activity Surfactants

Surfactant effect: Microemulsions

Applications Physical applications Reaction media

Summary

- Micelles are known to catalyze various chemical reactions
- Micelles can alter selectivity of reactions
- Micelles can offer physical protection of a group
- Solubilization leads to enhanced rates of reaction

- Orientation of molecules is responsible for the selectivity
- Orientation can be established by NMR shift

Summary

- IntSciEng ICT/CE/SSB 67
- Introduction Surface activity
- Surfactants Surfactant effects Microemulsions
- Applications Physical applications Reaction media
- Summary

- Interfacial science has applications in many fields
- Fundamentals behind these applications have many things in common
- Studying the common governing principles gives a better understanding of the underlying phenomena
- Applications are in physical systems as well as reactive systems
- Proper characterization of the materials involved as well as the surfactants reduces development time and improves efficacy

THANK YOU

