Neutrino Physics: an Introduction Lecture 3: Neutrinos in astrophysics and cosmology

> Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai

Amol Dighe

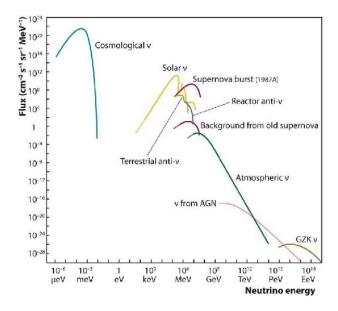
NIUS 2017, HBCSE, June 26th, 2017

## Lecture 1: Neutrino detection and basic properties

- Unique properties
- Discovery of neutrino flavours
- Measuring mass, helicity, interactions

## Lecture 2: Neutrino mixing and oscillations

- Solar and atmospheric puzzles and solutions
- Neutrino mixing, oscillations, flavour conversions
- The three-neutrino mixing picture


## Lecture 3: Neutrinos in astrophysics and cosmology

- Low-energy (meV) cosmological neutrinos
- Medium-energy (MeV) supernova neutrinos
- High-energy (> TeV) astrophysical neutrinos

- No bending in magnetic fields  $\Rightarrow$  point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot come.

(ロ) (同) (三) (三) (三) (○) (○)

# Neutrino fluxes at different energies



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

- Low-energy (meV) cosmological neutrinos
- 2 Medium-energy (MeV) supernova neutrinos
- High-energy (> TeV) astrophysical neutrinos

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

## Low-energy (meV) cosmological neutrinos

## 2 Medium-energy (MeV) supernova neutrinos

## 3 High-energy (> TeV) astrophysical neutrinos

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## Source: abundance and temperature

- Relic density: ~ 110 neutrinos /flavor /cm<sup>3</sup>
- Temperature:  $T_{\nu} = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95 \text{ K} = 16.7 \text{ meV}$
- The effective number of neutrino flavors:  $N_{\rm eff}({
  m SM}) = 3.074$ . Planck  $\Rightarrow N_{\rm eff} = 3.30 \pm 0.27$ .
- Contribution to dark matter density:

$$\Omega_{\nu}/\Omega_{
m baryon} = 0.5 \left(\sum m_{\nu}/{
m eV}\right)$$

Looking really far back:

|                 | Time                                   | Temp                          | Z              |
|-----------------|----------------------------------------|-------------------------------|----------------|
| Relic neutrinos | 0.18 s                                 | $\sim$ 2 MeV                  | $\sim 10^{10}$ |
| CMB photons     | $\sim$ 4 $	imes$ 10 <sup>5</sup> years | 0.26 eV                       | 1100           |
|                 |                                        | Lazauskas, Vogel, Volpe, 2008 |                |

(日) (日) (日) (日) (日) (日) (日)

- Need detection of low-energy neutrinos, so look for zero-threshold interactions
- Beta-capture on beta-decaying nuclei:

 $\nu_e + N_1(A, Z) \rightarrow N_2(A, Z+1) + e^-$ 

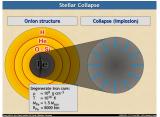
End-point region ( $E > M_{N_1} - M_{N_2}$ ) background-free. Energy resolution crucial.

Weinberg 1962, cocco, Mangano, Messina 2008, Lazauskas et al 2008, Hodak et al 2009

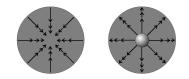
 Possible at <sup>3</sup>H experiments with 100 g of pure tritium but atomic tritium is neeed to avoid molecular energy levels

Lazauskas, Vogel, Volpe 2009, Hodak et al 2011

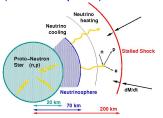
Low-energy (meV) cosmological neutrinos


## 2 Medium-energy (MeV) supernova neutrinos

## 3 High-energy (> TeV) astrophysical neutrinos


・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Supernova: the death of a star

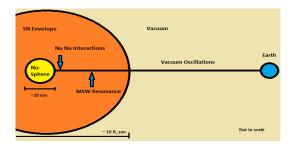

## Gravity $\Rightarrow$



## Strong nuclear force $\Rightarrow$



# Weak nuclear force (Neutrino push) $\Rightarrow$




# Electromagnetism (Hydrodynamics) $\Rightarrow$



(Crab nebula, SN seen in 1054)

# Neutrino oscillations in matter of varying density

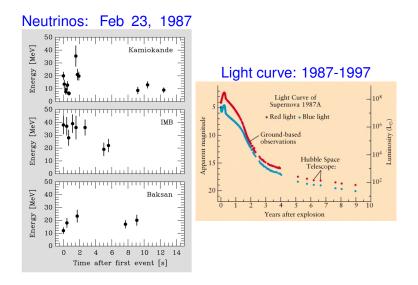


#### Inside the SN: flavour conversion

Non-linear "collective" effects and resonant matter effects

Between the SN and Earth: no flavour conversion

Neutrino mass eigenstates travel independently


Inside the Earth: flavour oscillations

Resonant matter effects (if detector is shadowed by the Earth)

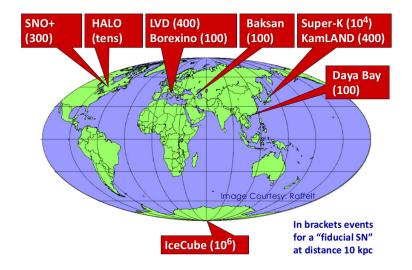
# Can neutrino conversions affect SN explosions ?

- Simulations of light SN have started giving explosions with the inclusions of 2D/3D large scale convections and hydrodynamic instabilities
- More push to the shock wave is still desirable.
- Non-electron neutrino primary spectra harder
   ⊕ electron neutrino cross section higher
   ⇒ After conversion, greater push to the shock wave
- Deeper the conversions, greater the neutrino push
- Neutrino flavour conversions in extremely dense media:
  - MSW resonances: 1000 km,
  - Neutrino-neutrino collective effects: 100 km
  - "Fast conversions": 10 km [Angular anisotropies needed, but quite naturally possible]

# SN1987A: neutrinos and light



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● のへで


# SN1987A: what did we learn ?

## Hubble image: now



- Confirmed the SN cooling mechanism through neutrinos
- Number of events too small to say anything concrete about neutrino mixing
- Some constraints on SN parameters obtained
- Strong constraints on new physics models obtained (neutrino decay, Majorans, axions, extra dimensions, ...)

## Supernova neutrino detectors



#### On neutrino masses and mixing

Identify neutrino mass ordering: normal or inverted

#### On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)
- How is a neutron star / black hole formed ? Is there a QCD phase transition ?


(日) (日) (日) (日) (日) (日) (日)

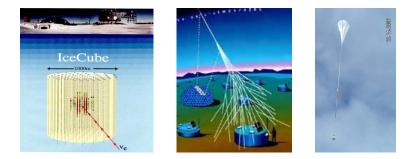
• How are heavy elements formed ?

- Low-energy (meV) cosmological neutrinos
- 2 Medium-energy (MeV) supernova neutrinos
- High-energy (> TeV) astrophysical neutrinos

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Sources of high-energy neutrinos

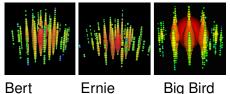



## The origins

- Primary protons interacting within the source or with CMB photons ⇒ π<sup>±</sup> ⇒ Decay to ν
- Individual sources like AGNs and GRBs
- Diffused flux accumulated over the lifetime of universe

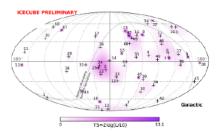
#### What we will learn

- Mechanisms of astrophysical phenomena
- Limits on neutrino decay, Lorentz violation, etc


# Detection of high energy neutrinos



## **Detection techniques**


- Water Cherenkov like IceCube:  $10^{11} \text{ eV} \lesssim E \lesssim 10^{16} \text{ eV}$
- Cosmic ray arrays for  $E \gtrsim 10^{17} \text{ eV}$
- Radio detection from balloon experiments (Askaryan)

# Highest energy neutrinos observed till now



Bert

#### Ernie



- Three events at ~ 1, 1.1, 2.2 PeV energies found
- Cosmogenic ? X Glashow resonance? X atmospheric?

Roulet et al 2013 ++ many

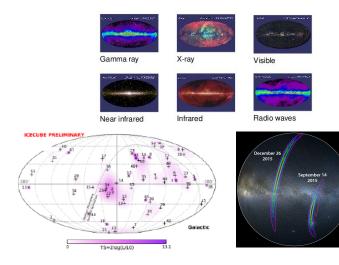
IceCube analyzing 54 events from 30 TeV to 10 PeV

# Flavor information from UHE neutrinos

#### Flavor ratios $\nu_e : \nu_\mu : \nu_\tau$ at sources

- Neutron source (nS): 1 : 0 : 0
- Pion source (πS): 1 : 2 : 0,
- Muon-absorbing sources (µDS): 0 : 1 : 0

#### Flavor ratios at detectors


- Neutron source:  $\approx 5:2:2$
- Pion source:  $\approx 1 : 1 : 1$
- Muon-absorbing sources :  $\approx$  4 : 7 : 7

## New physics effects

• Decaying neutrinos can skew the flavor ratio even further: as extreme as 6 : 1 : 1 or 0 : 1 : 1

Ratio measurement  $\Rightarrow$  improved limits on neutrino lifetimes

# Dawn of multi-messenger astronomy



- Low-energy (meV) cosmological neutrinos
- 2 Medium-energy (MeV) supernova neutrinos
- 3 High-energy (> TeV) astrophysical neutrinos

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Possible threads in "Neutrinos in Astrophysics"

- Using neutrinos to learn about the Sun
- Neutrino conversions inside a supernova
- Interpretations of high-energy events at Icecube

(日) (日) (日) (日) (日) (日) (日)

• Leptogenesis and baryogenesis

## Essential background skills

- Basic quantum mechanics, linear (matrix) algebra
- Numerical calculations and plots

## Topics to be learnt on the way

- Standard Model of particle physics
- Matter effects on neutrino flavour conversions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Statistics and data analysis