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BRUGGEMAN’S EFFECTIVE MEDIUM THEORY
Consider a metal slab having conductivity o1 as shown in Fig.1(a)

Fig.1(a)

Then, .
Ji = o015 (1)

where 70 Current passing through the metal

and qu: Applied electric field

Isotropy is assumed. o is a scalar.

Consider another metal slab of conductivity oo as shown in Fig.1(b)
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Fig.l(b)

7 = 09 Ey (2)

Now, consider a random mixture of the two metals individually described by
equations (1) and (2), and having concentrations C7 and Cy respectively.
What is the resultant(i.e. effective) conductivity ocrs of this random mixture
of the two metals?(refer Fig.2)

The problem was attempted by

Faraday (1837)

Maxwell (1871) Treatise on Elec. & Magn. Vol. I, Pg. 440, Sec. 3
J.C.Maxwell Garnet (1904) etc. Philos. Trans. R. Soc. Lond. 203, 385 (1904)
The first and perhaps the simplest approximation is

Ueff20101+020'2 (3)



This is currently known as “Virtual Crystal Approximation” (VCA).
Bruggeman had an entirely novel idea. He conducted the following “thought-
experiment” (Gedanken-Versuch):

Note: C7 +Cs =1

Fig.3
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On an average (Fou, E',,) = Eo
i.e.

C1Eout + C2E!,,, = Ey (4)

i.e. on an average there should be no further “scattering”.

The problem is “How to implement this idea?”

To do this, we need to solve the “single inclusion” problem in Figs. 4(a) and
4(b). This is a two dimensional problem and no azimuthal dependence is needed
to be considered.

Consider fig.4(a)

The potential in the effective medium is

V2U0ut = 0



We set constant term

Since there is no net charge on sphere,

bp =0

At large distance, the electric field :7E0 B
.. At large distance, the potential =Fyr cos (= —Eyz)

s.ag,az, =0
a; = —EO
_ b1 by bs
Uout (1) = —FEqgrcos 0 + —cos0 + —Pacosf + — P3cosf + - - (5)
T T r
(oS l dl
Uin(r) = Z ar' + T Pi(cos )
1=0

as r — 0, Ujp(r) is finite. . d; =0V 1

Constant term is set to zero, ¢y = 0. (since zero can be redefined.)

Now, the spherical inclusion is small and we take the electric field inside it to
be uniform, viz E;,

e #0, cg=c3=---=0.

FE;,z = circosf

. Uy, = c1rcosf (6)
At the interface
U’L’I’L(T) = Uout (’I") (7)
(Continuity of potential) B )
01E, = 0es i Epuy (8)

(Continuity of current in normal direction)
(7) =

b b b
cracos = —Fpacos + —; cosf + %Pg(cos 0) + —in(cos 0)+---
a a a

From the orthonormality of Legendre polynomials

by=bs=by=---=0

by
c.caa = —FEpa+ 2 (9)
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Eq. (8) implies




2b
.o = (—Eo — CL31> Oeff

20
—01C1 = O¢ff (E+a31) (10)

Eliminating ¢; from (9) and (10),
bl 2bl
g1 (a2 — an) + a0¢f f (E() + a3> =0

o 20,

g1 — Ueff
by = EBpa® | ———&1
' ’ (01+20eff)

ie.

From (9),

1 01— Ocff
o1 = —Eo+ —Ega® [ ZL—2el1
! o+t a3’ <01 +20c5f

- _E, [‘71 +20ep5 — 01 +Ueff}

o1 +20'eff

30cry
00'1 + QUeff

We are mainly interested in by,

E e
UOUt(T) = —FEgrcost — —0(13 Oeff — 01 cosf
T2 01 + 20€ff

Eout == 78U i - EO - (13 70— /1 91 *g 03T
0z o1+ 2055 oz \ r
Similarly, ~
am R (S22 (2 (Bar))
02 + 20csf 0z \ 3

o, Ters =) | o (Oepr —2) _ (1)
01+ 2055 02+ 20c5f
This is BRUGGEMAN’S EFFECTIVE MEDIUM RESULT.
We can go a step further and solve for o.fs, from (11),

Using eq.(4),

Ci(o2 +20¢55)(0csy — 01) + Co(01 + 2055 (0epp — 02) =0
Cl(—0102+0206ff+203ff—20103ff)+02(—0102+0106ff—|—203ff—202(Ieff) =0
Note that C7 +Cy =1

2202 + oepp{(1 = 3C1)o1 + (1 — 3C2)o2} — 0102 =0

Let
r=(3C1 — 1)oy + (30 — 2)02 (12)



203” —T0cpf — 0102 =0

) 7+ (r2 4 80102)'/2
S Oeff = 4

Now, 01,09,0¢¢f > 0 (£ 0)
Hence,

(r? + 80102)1/2 >r

So, we must choose the +ve sign.

r+ (r? 4 8o102)"/?
S Oeff = 4 (13)

Analysis of the Result:

1.

Ogff

The Percolation Threshold:

Consider a mixture of good and poor conductors.
Let 04 ~ 0(poor conductor)

r~(3Cy —1)oy

Let Cl ~ %

i.e. the good conductor has a low concentration of 1/3 and the poor
conductor predominates.

Sor>=0

S Oeff = 0

VCA result of eq.(3)=

UeffZOifcl — 0

> EMT

> VCA

]_)2 2/3 1
Co

Let us call P, = percolation threshold, as the concentration of good con-

ductor, when current ceases (i.e. oeps = 0)

P, =1/3 = 33%(3-dim)

Thus EMT predicts a PERCOLATION THRESHOLD !

Thus, enough conductor (1/3), put into an insulator, makes it conducting.
enough insulator (2/3), put into a conductor, makes it insulating.

agrees with observations:-

(i) In metallurgy.

(ii) Leaking roof (a common monsoon problem in India) Cement, Gravel,
sand.
Sand concentration > 33%



(iii) Surahi

Consider a resistor network (non-directed percolation)
Remove bonds at random.

current—voltage

Computer experiments give P, = 15 to 17% in 3 - dim.

In fact P, is different when you have directed percolation.

Note that such results don’t work in the case of neural transmission. Thus
P, ~ 0 like VCA. But VCA is not supposed to be operative in this case &
the agreement is purely coincidental.

2. Slope at percolation threshold

— EMT

~ computer simulation
Ogff

This is important in critical phenomenon

00cps 00y 001 _ 00cyy <5(1 - 02)) _ Ooess

aC, — 90, 90, ~ aC, ac, ac,
VCA: p 5
Oeff _ v
ac, |7=0 = “3g; (C1o1+0)
= —0q

.. approaches zero with a negative slope of value o.

EMT:
6o€ff

0C5

(2= 0) 1[37« 87‘}

=== "7 |ac, T acy

01:1/3



1 0r

2 801

10
= —58701[0'1(301 — 1)]

3
=—=0
571

Both are linear. Computer experiments, show non-linearity.

3. The theory is enormously successful in the metallic regime, away from the
percolation threshold.

4. A look at VCA result: oc5r = Cro1 + Cr09
This philosophy is widely used.
Vegard’s law in crystal structure:
Ga metal has an interatomic distance d
As insulator has an interatomic distance do
GaAs semiconductor has an interatomic distance % (d; + da)
Cui—cNic has an interatomic distance Cdy; + (1 — C)dey, ete.
Going beyond VCA result in an intuitive way.

Oeff = Cro1 + Caog + C1C2(ar101 + az02)
=VCA + NORDHEIMS RULE (1931)

:Ensures C = 0, 0cpf = 01
Cg = O, Oeff =01
This rule is often found.
“Band bowing” is one example.( in semiconductors)

5. The theory goes under the name of “Coherent Potential Approximation”
(CPA) when applied to elementary excitations in substitutionally disor-
dered solids:

Electrons (Soven 1967)
Phonons (Tayler 1967)

This theory is not applicable to positionally disordered systems.

6. Confusion of terms:
“Effective Medium Theory”
“Effective Medium Approximation”
“Coherent Potential Approximation”
“Coherent Medium Approximation”

Further References:

1. Bruggeman in his paper also works out the case for dimensionalities d =
1,2.
01 — Oeff 02 — Oeff
C +C =0
101+(d—1)08ff 202+(d—1)0'eff

One could derive this and work out its implications.



. One could extend the theory to an n-component mixture
- o;— 0

> e

| 0'1+(d—1)0’eff=0

Given above, this is trivial.

. D.Polder and J.H.Van Santen, Physica Utrecht 12, 257 (1946) have worked
out the problem for ellipsoids instead of spheres.

. D.Stroud Phys. Rev. B 12 3368 (1975)He has considered the conductivity
of the spherical regions to be tensorial and not merely isotropic.

. D.Stroud (above reference) & B.E.Springett-(Phys. Rev. Lett. 31,1463
(1973)) have focussed on the ac case.

. S.Kirkpatrick Rev. Mod. Physics 45, 574 (1973) has applied the Bruge-
mann idea to random resistor networks. In these networks. In these
networks the absence (or presence) of resistors is chosen stochastically,
but their positions are laid out in a periodic array. The way Kirkpatrick
proceeds is as follows. View each possible choice of resistor as embedded
in an otherwise uniform network of “effective”resistors. The resistor un-
der consideration will have an excess or deficit voltage, compared to the
effective resistors far from it. The effective resistor value is then chosen so
that the average voltage deviation vanishes.

. An excellent overview is provided by Rolf Landauer in “Electrical Con-
ductivity in Inhomogeneous media”.

. The method has been widely used in many areas as outlined above .An
application to the effective viscosity of a random distribution of spheresin
a fluid is by

G.K.Batchelor, J-Fluid Mech. 52,245 (1972)

G.K.Batchelor, J-7-Green, J-F1. Mech. 56, 401 (1972)

G.K.Batchelor, Ann.Rev. Fluid Mech. 6.227 (1974)

H.C.Brinkman, Appl. Sci. Res. A1,27 (1947)

. Bruggeman’s idea has been applied to calculation of the elasticity of poly-
crystalline rocks by

E.Kroner: J.Mechs. Phys.-Solids 15,319-339 (1967)

L.Thompsen: J.GeoPhys. Res. 77, 315-327, (1972).
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