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Abstract

We apply the real space Renormalisation Group (RNG) technique to a variety of one-dimensional Ising
chains. We begin by recapitulating the work of Nauenberg for an ordered Ising chain, namely the
decimation approach. We extend this work to certain non-trivial situation namely, the Alternate Ising
Chain and Fibonacci Ising chain. Our approach is pedagogical and accessible to undergraduate students
who have had a first course in statistical mechanics.
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2 ONE DIMENSIONAL ISING MODEL

Introduction

There is a deep and useful connection between Statistical Mechanics and Quantum Field Theory. Kenneth
Wilson appreciated this connection and applied the renormalization ideas to statistical mechanics1.
Application of these techniques to both classical and quantum many body problems have seen success.
However, RNG calculations are often very complex and the approximations made are sometimes obscure.
Often, one has to resort to extensive numerical calculations.

The present work is written in the spirit of conveying some essential ideas of RNG to a beginner
and applying this approach to more complicated Ising chains. We present some pedagogical examples of
a form of real space RNG termed Decimation. This technique was introduced by Michael Nauenberg in
the context of the one-dimensional Ising model. Unfortunately, this attractive piece of work2 is marked
by several typographical errors. We present Nauenberg’s work in a simplified (and hopefully error-free)
fashion. We extend it to related Hamiltonians such as the Alternate Ising model and Fibonacci chain
Ising model.

The RNG strategy can be symbolically stated as follows. It transforms the Hamiltonian, e.g.
H

′

= R(H). Next, one iterates it,H
′′

= R(H ′) until one obtains a fixed point Hamiltonian, H∗ = R(H∗).
The flow towards the fixed point Hamiltonian and the Hamiltonian H∗ itself yields insight into the
physical properties of the system. Wilson suggested such a procedure and was able to elicit the critical
properties of the 2D and the 3D Ising model and a famous quantum system namely, the Kondo problem3.

In Sec.(2), we recapitulate the work of Nauenberg and describe how decimation is carried out
for the one-dimensional Ising model. In Sec. 3, we extend this approach to alternate Ising model where
the coupling is alternate like in a binary alloy. In Sec. 4, we discuss the Fibonacci Ising chain. Sec. 5
constitutes the conclusion.

One Dimensional Ising Model

We start with the familiar one-dimensional Ising model for N spins, Si = ±1, i = 1, 2...N , with nearest
neighbour coupling constant J, see Fig.(1).
The Hamiltonian HN for this model is written as,

S1 S2
J

S3
J

S4
J

S5
J

Figure 1: One Dimensional Ising Spin model

HN = − J

kT

N
∑

i=1

SiSi+1,

where SN+1 = S1, J is the nearest neighbiour exchange coupling, T is the temperature, and k is the
Boltzmann constant. We divide the coupling constant by kT for the sake of convenience in further
derivations. One can consider the dimensionless Hamiltonian HN , without loss of generality,

HN (K) = −K

N
∑

i=1

SiSi+1 (
J

kT
= K)

Note that K > 0 implies ferromagnetism.

c©Vijay A. Singh and Shraddha Singh 1



V
.S

in
gh

 a
nd

 S
.S

in
gh

2.1 Decimation 2 ONE DIMENSIONAL ISING MODEL

Decimation

Let P be the transfer matrix such that P(i, i+1) = exp(KSiSi+1). Thus, the canonical partition function
ZN is given by,

ZN =
∑

s1,s2,s3...

exp(−HN (K)) =
∑

P(S1S2)P(S2S3)P(S3S4)...

P =

[

eK e−K

e−K eK

]

As the elements of the matrix depend on the product SiSi+1 which is same for all i, we can write

ZN =
∑

s1,s2,s3...

(P(K)
N
) = Tr(P(K)

N
)

Now, instead of computing the usual partition sum as shown above, we consider only the partial sum
of exp[−HN (K)] over all possible values of even spins, Si = ±1, i = 2, 4, .... and for even N we obtain a
scaled partition function exp[−HN (K ′)], (see Fig. (2)).

S1 S2
K

S3
K

S4
K

S5
K

S1 S3
K ′

S5
K ′

Figure 2: Decimation

The Hamiltonian becomes,
∑

[s2s4..sN ]

exp[−HN (K)] = P
2
S1S3

P
2
S3S5

....P2
SN−1S1

The idea behind this partial summation is to find a renormalization transformation K→ K
′

such that,

P
2(K) = exp[2g(K)]P(K

′

)
∑

exp(−HN (K)) = TrP(K)
N

= Tr[P(K)
2
]
N

2 , (1)

where g(K) is a scalar function of K. Then K
′

can be interpreted as an effective Ising coupling constant
for the remaining odd spins Si, i = 1, 3, 5....N − 1 and Eq. (1) may (formally) be written as.

exp(−HN (K)) = P(K)
N

= [exp(2g(K))P(K′)]N/2

= exp(Ng(K))[(P(K ′))]N/2

= exp(Ng(K))exp(−HN

2
(K ′))

Thus, the resulting equation becomes,
∑

[s1s2..sN ]

exp[−HN (K)] =
∑

[s1s3..sN ]

exp[−HN/2(K
′

) +Ng(K)] (2)

To make the procedure clear we discuss the case of 3 spins,

eK
′S1S3 ∗ e2g(K) =

−1
∑

S2=+1

eKS1S2 ∗ eKS2S3

= eK(S1+S3) + e−K(S1+S3)

c©Vijay A. Singh and Shraddha Singh 2
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2.1 Decimation 2 ONE DIMENSIONAL ISING MODEL

If S1 = S3 = +1

eK
′ ∗ e2g(K) = e2K + e−2K (3)

If S1 = −S3 = +1

e−K′ ∗ e2g(K) = 2 (4)

Using Eq.(4) we obtain g(K)

g(K) =
1

2
K

′

+
1

2
ln2

Next using Eq. (3) we obtain K’

K
′

=
1

2
ln{cosh(2K)}

Thus K ′ is related to the original coupling K by a non-linear transformation. We denote this as K ′ =
f(K). Near the fixed point K = K∗ + ǫ,

K ′ = f(K∗ + ǫ)

K∗ + ǫ′ = f(K∗) + ǫf ′(K∗)

As K∗ = f(K∗) near a fixed point K* we have

ǫ′ = ǫf ′(K∗)

which is a linear transformation that resembles

ǫ′ = λǫ

where λ = tanh(2K∗).

There are two solutions for the equation K∗ = ln{cosh(2K∗)}/2, which are known as fixed
points, K∗ = 0 and K∗ = ∞ with λ = 0 and λ = 1 respectively. For phase transition λ must be greater
than unity. This proves the well established result that there is no phase transition for 1D Ising spin
model. There is another way to see this. After applying the renormalization transformation n times, the
mapping Kn−1 → K(n) can be obtained from the recurrence relation,

K(n) =
1

2
ln {cosh(2K(n−1)

)} (5)

where K(0) = K.

Let ζ = tanh(K) (6)

therefore K ′ =
1

2
ln(

1 + ζ2

1− ζ2
) (7)

Hence, ζ ′ = tanh(K’) = tanh{1
2
ln(

1 + ζ2

1− ζ2
)}

=

exp
(1

2
ln
(1 + ζ2

1− ζ2

))

− exp
(

−
(1

2
ln
(1 + ζ2

1− ζ2

)))

exp
(1

2
ln
(1 + ζ2

1− ζ2

))

+ exp
(

−
(1

2
ln(

1 + ζ2

1− ζ2

)))

=

√

1 + ζ2

1− ζ2
−
√

1− ζ2

1 + ζ2
√

1 + ζ2

1− ζ2
+

√

1− ζ2

1 + ζ2

=
(1 + ζ2)− (1− ζ2)

(1 + ζ2) + (1− ζ2)

c©Vijay A. Singh and Shraddha Singh 3
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2.2 Free Energy and Scaling equation 2 ONE DIMENSIONAL ISING MODEL

Thus,

ζ ′ = ζ2 (8)

tanh(K’) = tanh(K)
2

Since tanh(K) < 1, tanh(Kn) tends to zero as n −→ ∞. This suggests that the effective coupling gets
weaker with each decimation and we are left with a non-itneracting system which will show no phase
transition.

Free Energy and Scaling equation

The equation for free energy per spin is given by,

fN (K) =
1

N
ln
∑

[s]

exp[−HN (K)]1

If we use the expression for Hamiltonian in K′ post decimation from Eq.(2) we can write,

fN (K) =
1

N
ln
∑

[s]

exp[−HN

2
(K ′) +Ng(K)]

fN (K) = fN

2
(K′) +

1

N
ln
∑

[s]

exp[Ng(K)]

fN (K) = fN

2
(K′) + g(K)

fN/2K
′

= 2{fN (K)− g(K)} (9)

In the thermodynamic limit, the functional relation in Eq. (9) leads to the scaling equation (for f(K) =
limN→∞fN (K)),

f(K ′) = 2{f(K)− g(K)} (10)

We can prove that the scaling equation obtained is unique as follows,

f−(K) = f1(K)− f2(K)

f−(K
′) = f1(K

′)− f2(K
′)

= 2{f1(K)− g(K)} − 2{f2(K)− g(K)}

f−(K) =
1

2
f−(K

′)

f−(K) =
1

2n
f−(K

(n))

limn→∞f−(K
(n)) = 0 and f−(0) = 0 −→ 0

∴ f−(K) = 0

Hence, f1(K) = f2(K)

Free energy solution

Henceforth in this section, we intend to find a solution to the free energy equation obtained in the
previous sections imposing boundary conditions as follows,

f(0) = ln2

Thus, f−(K) =
1

2
f(K ′) + g(K)

1free energy, f = + 1

N
ln Z, as taken in this document

c©Vijay A. Singh and Shraddha Singh 4
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2.3 Free energy solution 2 ONE DIMENSIONAL ISING MODEL

Next decimation step gives,

f−(K
′) =

1

2
f(K ′′) + g(K ′)

2(f−(K)− g−(K)) =
1

2
f(K ′′) + g(K ′)

f−(K)− g−(K)− 1

2
g(K) =

1

2
f(K ′′)

f−(K) =
1

2
f(K ′′) + g−(K) +

1

2
g(K)

f−(K) =
1

2
f(K ′′) +

1
∑

i=0

g(K)

2i

Generalising, f−(K) =
1

2n
f(K(n)) +

n−1
∑

i=0

g(K)

2i

let n −→ ∞ and K(n) −→ 0 and defining

h(K) = limn−→∞

f(k(n))

2n

we get, f(K) = h(K) +

1
∑

i=0

g(K)

2i

If f(0)= finite then h(K)=0

∴ f(K) =

∞
∑

i=0

g(K(m))

2m

= g(K) +
g(K ′)

2
+

g(K ′′)

22
+

g(K ′′′)

23
+ .......

=
1

2
ln2 +

1

2
K ′

1

22
ln2 +

1

22
K ′′ +

1

23
ln2 +

1

23
K ′′′ + ......

=

(

1

2
+

1

22
+

1

23
+ ......

)

ln2 +

∞
∑

n=1

Kn

2n

=
1
2

1− 1
2

ln2 +

∞
∑

n=1

Kn

2n
2

= ln2 +

∞
∑

n=1

Kn

2n

Using the recurrence relation for Kn from Eq. (5) we have,

f(K) = ln2 +
∞
∑

n=0

1

2
ln cosh(2Kn−1)

2n

Eqs. (6), (7) and (8) give us the liberty to write,

f(K) = ln2 +

∞
∑

n=1

ln

(

1+ζ2n

1−ζ2n

)

2n+1

f(K) = ln2 + ln

(

∞
∏

n=1

(

1 + ζ2
n

1− ζ2n

)1/2n+1
)

− 1 < ζ < 1 (11)

2(sum of an infinite geometric progression = a

1−r
, a = 1

2
being the first term and r = 1

2
being common ratio)

c©Vijay A. Singh and Shraddha Singh 5
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2.3 Free energy solution 2 ONE DIMENSIONAL ISING MODEL

Applying the trigonometric identity,

1√
1− x2

=
∞
∏

n=0

(

1 + x2n

1− x2n

)1/2n+1

− 1 < x < 1

we have the following equations,

f(K) = ln2 + ln

(

1
√

1− ζ2

)

= ln2− ln(
√

1− ζ2)

= ln

(

2
√

1− ζ2

)

f(K) = ln

(

2
√

1− tanh2(K)

)

Hence, f(K) = ln(2cosh(K)) (12)

Note that this is the exact relation for free energy of 1-D Ising Model (if f = + 1
N lnZ). Further we show

that it satisfies the scaling Eq.(10).

R.H.S. = 2

{

ln(2cosh(K))− 1

2
ln2− 1

2
K ′

}

= −ln 2−K ′ + 2ln(2cosh(K))

= −ln2−K ′ + 2ln2 + 2ln(cosh(K))

= ln2−K ′ + 2ln(cosh(K))

= ln2− 1

2
ln (cosh(2K)) + 2ln(cosh(K))

L.H.S. = ln(2cosh(K’))

= ln2 + ln(cosh(K’))

= ln2 + ln(
eK

′

+ e−K′

2
)

= ln2− ln2 + ln(exp(
1

2
ln(cosh(2K))) + exp(exp(−1

2
ln(cosh(2K))))

= ln(cosh(2K)
1
2 +

1

cosh(2K)
1
2

)

= ln(cosh(2K) + 1)− 1

2
lncosh(2K)

= ln(2cosh
2
(2K))− 1

2
ln(cosh(2K))

= ln2 + 2 ln(cosh(2K))− 1

2
ln(cosh(2K))

As we can see from the above equations, L.H.S.= R.H.S., this proves that the free energy solution
determined by Eq.(12) satisfies the scaling equation. f(K) = 2 ln(sinh(K)) also satisfies the scaling
equation but it does not satisfy the boundary condition f(0)=ln2. Thus, it is not a solution.

We next discuss the more complex (unequal Ji) one-dimensional Ising models.

c©Vijay A. Singh and Shraddha Singh 6



V
.S

in
gh

 a
nd

 S
.S

in
gh

3 ALTERNATE ISING MODEL

Alternate Ising model

Here the K ′

is are arrranged in the manner shown in Fig.(3).

S1 S4
K ′

1
S7

K ′

2

S1 S2
K1

S3
K2

S4
K1

S5
K2

S6
K1

S7
K2

Figure 3: Similar Decimation for Alternate Ising Model

In order to adopt a similar decimation procedure we need to consider four spins at a time. This is
illustrated in Fig.(3). Using this procedure,

eK
′

1S1S4 ∗ eg1 =
∑

S2,S3

eK1S1S2 ∗ eK2S2S3 ∗ eK1S3S4

=
∑

S3

eK1S3S4 ∗ 2cosh(K1S1 +K2S3)

= eK1S4 ∗ 2cosh(K1S1 +K2) + e−K1S4 ∗ 2cosh(K1S1 −K2)

Like in the previous section, we consider S1 = S4 = +1 to obtain ,

eK
′

1 ∗ eg1 = eK1 ∗ 2cosh(K1 +K2) + e−K1 ∗ 2cosh(K1 −K2) (13)

and S1 = −S4 = +1 to obtain,

e−K′

1 ∗ eg1 = e−K1 ∗ 2cosh(K1 +K2) + eK1 ∗ 2cosh(K1 −K2) (14)

Using Eqs.(13) and (14), and cosh(x)=cosh(-x) we obtain,

e2K
′

1 =
eK1cosh(K1 +K2) + e−K1cosh(K1 −K2)

eK1cosh(K1 −K2) + e−K1cosh(K1 +K2)

Using Componendo and Dividendo, we write

tanh(K ′

1) =
eK1{cosh(K1 +K2)− cosh(K1 −K2)}+ e−K1{cosh(K1 −K2)− cosh(K1 +K2)}
eK1{cosh(K1 +K2) + cosh(K1 −K2)}+ e−K1{cosh(K1 −K2) + cosh(K1 +K2)}

and employing the addition properties of cosh(x),

cosh(K1 +K2) = cosh(K1)cosh(K2) + sinh(K1)sinh(K2)

cosh(K1 −K2) = cosh(K1)cosh(K2)− sinh(K1)sinh(K2)

We have,

tanh(K ′

1) = tanh2(K1)tanh(K2)

One similarly obtains,

tanh(K ′

2) = tanh2(K2)tanh(K1)

The fixed points are,{K∗

1 ,K
∗

2} = {0, 0} or {∞,∞}.

Note that we need to block spins in a judicious way. If we block them in a non similar fashion,
i.e. if the new lattice is not alternate (see Fig.(4)), then,

c©Vijay A. Singh and Shraddha Singh 7
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4 FIBONACCI CHAIN ISING MODEL

S1 S3
K ′

1
S5

K ′

1
S7

K ′

1

S1 S2
K1

S3
K2

S4
K1

S5
K2

S6
K1

S7
K2

Figure 4: Non similar decimation

tanh(K ′

1) = tanh(K1)tanh(K2)

In this case a fixed point discussion is not possible as K ′

2 does not exist. However, the free energy is the
same in either case.

Fibonacci chain Ising model

In this section we consider a fibonacci series where two b′s are never adjacent i.e. the nearest neighbour
of ’b’ is always ’a’ (see Fig.(5)). We suggest a method to generate the decimation procedure below.

s1
a

s3
b

s4
a a

s6
b

s7
a b

s9
a

s10
a b

s12
a

Figure 5: Fibonacci Ising model

Matrix method for generation

It is well known that the Fiboanacci chain can be generated by setting up a number of rules for rabbit
procreation, better known as Fibonacci Rabbits4. In the present case we generate it by the mathematical
operation shown below. Note that N(0) denotes a vector AB. N(i) denotes the resulting vector after N(0)

has been operated ’i’ times by M, a matrix operator to generate the Fibonacci Ising chain.

M =

[

1 1
1 0

]

, N (0) =

[

N (0)A

N (0)B

]

=

[

A
B

]

: AB

MN (0) =

[

1 1
1 0

] [

A
B

]

=

[

A+B
A

]

: ABA = N (1)

MN (1) =

[

1 1
1 0

] [

A+B
A

]

=

[

A+B +A
A+B

]

=

[

N (2)A

N (2)B

]

= N (2) : ABAAB

MN (2) =

[

1 1
1 0

] [

A+B +A
A+B

]

=

[

A+B +A+A+B
A+B +A

]

=

[

N (3)A

N (3)B

]

= N (3) : ABAABABA

and so on.

For general iteration,

N
(n+1)
A = M11N

(n)
A +M21N

(n)
B M11 = M21 = M12 = 1

N
(n+1)
B = M12N

(n)
A +M22N

(n)
B M22 = 0

as n −→ ∞, the ratio r = limn−→∞N (n)A/N (n)B −→ (
√
5 + 1)/2. Here NA, NB are length scales of

bond A and B respectively.

c©Vijay A. Singh and Shraddha Singh 8
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4.2 Decimation method 4 FIBONACCI CHAIN ISING MODEL

Decimation method

Consider now the Ising Chain shown in Fig.(6):

S1 S2
JL

S3
JS

S4
JL

S5
JL

S6
JS

S1 S3
J ′

L
S4

J ′

S
S6

J ′

L

Figure 6: Self-similar blocking for Fibonacci chain

Let Ki = Ji/kT

HN (K) = −
N−1
∑

i=1

KiSiSi+1

eK
′

L
S1S3 ∗ eg1 =

−1
∑

S2=+1

eKLS1S2 ∗ eKSS2S3

As in the previous sections, let S1 = S3 = +1 we obtain,

eK
′

L ∗ e2g1 = eKL+KS + e−(KL+KS) (15)

and S1 = −S3 = +1 yields,

e−K′

L ∗ e2g1 = eKL−KS + e−(KL−KS) (16)

Using Eqs.(15) and (16), and cosh(x) = cosh(−x) leads to,

e2K
′

L =
cosh(KL +KS)

cosh(KL −KS)

Using Componendo and Dividendo, we get

tanh(K ′

L) =
cosh(KL +KS)− cosh(KL −KS)

cosh(KL +KS) + cosh(KL −KS)

= tanh(KL)tanh(KS)

and g1 =
1

2
K ′

L +
1

2
ln(2cosh(KL −KS))

For the ordered case (KL = KS) the tansformation reduces to tanh(K ′) = tanh2(K) and g1 is given
by the same expression as Eq.(18). Further, K ′

S = KL and g2 = 0. Hence, all the above equations are
consistent with ordered case. The fixed points in this case are,{K∗

1 ,K
∗

2} = {0, 0} or {∞,∞}.

We designate bond lengths, distance between two neighbouring sites in the lattice before and
after first decimation process, for the two types of bonds by two sets of variables. Here, the new lengths
are L′ for K′

1 and S′ for K′

2 corresonding to the old lengths, L for K1 and S for K2. Self similarity is
preserved if the new lengths follow the following relation.

L′

S′
=

L

S

But L′ = L+ S and S′ = L. Thus,

1 +
S

L
=

L

S
= x

1 +
1

x
= x

which leads to x = (
√
5 + 1)/2, the golden ratio.
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Conclusion

This decimation approach is perhaps the simplest version of RNG. Its extension to higher dimension
however gets tricky. The solution to this problem uses the Migdal Kadanoff transformation5,6. Inter-
estingly, this decimation procedure inspired similar work in quantum systems. We hope to describe this
quantum version introduced by Bhat, Singh and Subbarao7 in the future.

Appendix

Partion Function and Free Energy for 1D Ising model

The partition function for this system can be derived as follows :

ZN =
∑

s1,s2,s3...

exp(−H) (kT = 1) (17)

ZN =
∑

s1,s2,s3...sn

exp(K)

n
∑

i=1

(SiSi+1) (kT = 1) (18)

ZN =
∑

s1,s2,s3...sn−1

exp(K)
n−1
∑

i=1

(SiSi+1)

sn,sn+1=−1
∑

sn,sn+1=1

exp(KSnSn+1) (19)

ZN = ZN−1

sn,sn+1=−1
∑

sn,sn+1=1

exp(KSnSn+1) (20)

ZN = ZN−1

sn=−1
∑

sn=1

(2coshKSn) (21)

ZN =

Si=1
∑

Si=−1

(2Ncosh(KSi)
N ) (22)

As Si = ±1, and cosh function is independent of sign of the argument, hence the above equation can be
written as

ZN = (2N+1cosh(K)N ) (23)

Free Energy equations would follow as,

FN

kT
= −kTlogZ

FN

kT
= −(N + 1)ln2−Nln{cosh(K)} (24)

fN =
FN

NkT
= −ln2− ln{cosh(K)} (Taking

1

N
→ 0) (25)
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