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Introduction

Superconductivity is a phenomenon characterized by two main macroscopic observations: (a) the occurrence of zero
resistance and (b) the total or partial expulsion of the magnetic field (Meissner effect) below the superconducting transition
temperature (Tc). The Ginzburg-Landau (G-L) theory is a phenomenological theory which initially aimed to explain the
essential aspects of superconductivity before a full quantum theory was developed by Bardeen Cooper and Schrieffer
around 1956. It is in essence a mean field theory for second order phase transitions, where the symmetry of the system
changes discontinuously while its state changes continuously at the transition temperature and is therefore valid for
temperatures close to Tc. An order parameter (ψ) is thus defined to describe the ordered phase (superconducting state)
and the free energy (F ) of the superconductor can be expressed in terms of the order parameter ψ.

Deriving the G-L equations

In the absence of external magnetic field, the free energy of the superconductor is F =
∫

fdV where f is the free energy
per unit volume and can be written as,

f = fn + α|ψ|2 + β

2
|ψ|4 (1)

Here ψ is the order parameter. It is a complex scalar field and α and β are temperature dependent but otherwise
constant. The free energy per unit volume of the normal state is fn.
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Plot of the free energy of a superconductor versus order parameter for (α = −1.3, β = 1.4)

f − fn = α|ψ|2 + β|ψ|4
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2.1 First G.L equation 2 DERIVING THE G-L EQUATIONS

−1
−0.5

0
0.5

1−1

0

1

0

2

4
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In the above figures we depict the dependence of the free energy on the order parameter. For positive α the free

energy is a paraboloid with minimum at |ψ| = 0. On the other hand for α negative, f − fn resembles a Mexican hat

with a minimum at |ψ| 6= 0. The properties of the superconductor depend crucially on α assuming negative values at low

temperatures.

In the presence of external magnetic field , f is given as,

f = fn + α|ψ|2 + β

2
|ψ|4 + 1

2m∗
| ( h̄
i
▽+ 2e ~A)ψ |2 + 1

2µ0

( ~B − ~Bext)
2 (2)

Note that is the total field at a point due to the external field and the field generated by the supercurrent. We know
that ~B= ▽× ~A. On substituting for ~B we obtain,

f = fn + α|ψ|2 + β

2
|ψ|4 + 1

2m∗
| ( h̄
i
▽+ 2e ~A)ψ |2 + 1

2µ0

[ (▽× ~A)− ~Bext ]
2 (3)

First G.L equation

Minimizing f with respect to ψ∗ keeping ψ and ~A fixed yields

δψ∗f = αψ δψ∗ + β|ψ|2 ψ δψ∗ +
1

2m∗
[ (
h̄

i
∇+ 2e ~A)ψ . (

−h̄
i
∇+ 2e ~A)δψ∗ ] (4)

Let us define, ~p = (
h̄

i
∇+ 2e ~A)ψ. Note that ~p is a vector but, as defined, it is not an operator.

δψ∗f = αψ δψ∗ + β |ψ|2 ψ δψ∗ +
1

2m∗
[ ~p . (

−h̄
i
∇+ 2e ~A)δψ∗ ] (5)

δψ∗f = αψ δψ∗ + β |ψ|2 ψ δψ∗ +
1

2m∗
[
−h̄
i
~p . ▽ δψ∗+ 2e~p . ~A δ ψ∗ ] (6)

We now use the identity,
▽.(~pδψ∗) = (▽.~p)δψ∗ + ~p.▽ δψ∗ (7)

Note - We will neglect the ▽.(~pδψ∗) term because when we perform the volume integral and take the limit to infinity,
it becomes zero (Refer appendix for the proof).

δψ∗f = αψ δ ψ∗ + β|ψ|2 ψ δ ψ∗ +
1

2m∗
[
h̄

i
(▽.~p)δψ∗ + 2e~p. ~A δψ∗ ] (8)

on substituting for ~p, we get

δψ∗f = αψ δψ∗ + β |ψ|2ψ δψ∗ +
1

2m∗
[
h̄

i
(▽.[ h̄

i
▽ ψ + 2e ~Aψ] ) + 2e (

h̄

i
▽ ψ + 2e ~Aψ). ~A ]δψ∗ (9)

= αψ δψ∗ + β |ψ|2 ψ δψ∗ +
1

2m∗
[ −h̄2 ▽2 ψ +

2eh̄

i
▽ .( ~Aψ) + (

2eh̄

i
(▽ψ). ~A) + 4e2 ~A2ψ ]δψ∗ (10)
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2.2 Second G.L equation 2 DERIVING THE G-L EQUATIONS

= αψ δψ∗ + β |ψ|2 ψ δψ∗ +
1

2m∗
[ (
h̄

i
▽+2e ~A)2ψ ] δψ∗ (11)

Since F has to be an extremum, so that δψ∗F = 0 for arbitrary variation of ψ∗, thus:

αψ + β|ψ|2ψ +
1

2m∗

(
h̄

i
▽ +2e ~A)2ψ = 0 (12)

This equation is known as the ”First G-L Equation”

Second G.L equation

Minimizing f with respect to A keeping ψ and ψ∗ constant yields

δAf =
1

2m∗
δA[ (

h̄

i
▽+ 2e ~A)ψ.(

−h̄
i
▽+ 2e ~A)ψ∗ ] +

1

2µ0

δA[(▽× ~A)− ~Bext]
2 (13)

We split the evaluation into two parts.

δAf = (δAf)I+ (δAf)II

The first term in δAf maybe simplified as follows

(δAf)I =
1

2m∗
δA[ (

h

i
▽+ 2e ~A)ψ.(

−h
i
▽+ 2e ~A)ψ∗ ] (14)

=
1

2m∗
[
2eh̄

i
ψ∗ ▽ ψ + 4e2 ~A|ψ|2 − 2eh̄

i
ψ▽ ψ∗ + 4e2 ~A|ψ|2]δ ~A

=
2eh̄

2im∗
[ψ∗ ▽ ψ − ψ▽ ψ∗].δ ~A+

4e2 ~A|ψ|2
m∗

δ ~A (15)

Note that the first term in the above equation is reminescent of the current density in quantum mechanics.
The second term in δAf maybe simplified as follows

(δAf)II =
1

2µ0

δA[(▽× ~A)− ~Bext]
2

=
1

2µ0

δA[(▽× ~A).(▽× ~A)− 2(▽× ~A). ~Bext + ~B2
ext]

=
1

2µ0

[(▽× ~A).(▽× δ ~A) + (▽× δ ~A).(▽× ~A)− 2(▽× δ ~A). ~Bext]

=
1

µ0

[(▽× ~A).(▽× δ ~A)− (▽× δ ~A). ~Bext]

=
1

µ0

[(▽× ~A)− ~Bext].(▽× δ ~A)

=
1

µ0

~D.(▽× ~C)

Where ~D= [(▽× ~A)− ~Bext] and ~C = δ ~A

We now employ the vector identity,

▽.( ~C × ~D) = ~D.(▽ × ~C) − ~C.(▽ × ~D) (16)

⇒ ~D.(▽× ~C) = ▽.( ~C × ~D) + ~C.(▽× ~D)

Using this identity in the above expression, we get

(δAf)II =
1

µ0

[▽.(δ ~A× [(▽× ~A)− ~Bext)] + δ ~A.(▽× (▽× ~A)−▽× ~Bext)]

©Sitikantha Das and Vijay A. Singh 3
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3 PENETRATION DEPTH

At the boundary, we have ~B = ~Bext

=
1

µ0

δ ~A.(▽× (▽× ~A)−▽× ~Bext)

=
1

µ0

▽× ( ~B − ~Bext).δ ~A (17)

Summarizing, we have worked out (δAf)I and (δAf)II Hence we can rewrite (δAf) as,

(δAf) = (δAf)I + (δAf)II

=
2eh̄

2im∗
[ψ∗ ▽ ψ − ψ▽ ψ∗].δ ~A+

4e2A|ψ|2
m∗

.δ ~A+
1

µ0

▽× ( ~B − ~Bext).δ ~A

If we write
~Js =

1

µ0

▽× ( ~B − ~Bext)

we obtain,

(δAf) =
2eh̄

2im∗
[ψ∗ ▽ ψ − ψ▽ ψ∗].δ ~A+

4e2A|ψ|2
m∗

.δ ~A+ ~Js.δ ~A (18)

In order to minimize f, equate (δAf) to 0.

(δAf) = 0 =
2eh̄

2im∗
[ψ∗ ▽ ψ − ψ▽ ψ∗].δ ~A+

4e2A|ψ|2
m∗

.δ ~A+ ~Js.δ ~A

~Js = (−2e)
h̄

2im∗

[ψ∗ ▽ ψ − ψ▽ ψ∗] −
4e2A|ψ|2

m∗

(19)

The equation which we just obtained is the ”Second G-L Equation”. To repeat, the first term in the equation
is reminescent of the current density except for the prefactor −2e which we hae brackted and which comes from the
(Cooper) paired electrons. The second term is also very significant.

Penetration depth

We consder the second G-L equation and attempt its solution. Let ψ =
√
ns exp (iφ) and this implies ⇒ ψ∗ =√

ns exp (−iφ)
On substituting ψ and ψ∗ in the above equation for ~Js we obtain,

~Js =
ieh̄

m∗
[
√
ns exp (−iφ)∇ψ −√

ns exp (iφ)∇ψ∗]− 4e2A|ψ|2
m∗

=
ieh

m∗
[
√
ns exp (−iφ).

√
ns exp (iφ).i.∇φ−√

ns exp (iφ)
√
ns exp (−iφ).(−i).∇φ]−

4e2A|ψ|2
m∗

=
ieh̄

m∗
[i.ns∇φ+ i.ns∇φ]−

4e2Ans
m∗

=
ieh

m∗
(2ins)∇φ− 4e2Ans

m∗

= −2nseh̄

m∗
(∇φ+

2eA

h
)

Taking curl on both sides,

∇× ~Js = −2nseh̄

m∗
[∇× (∇φ+

2eA

h
)]
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4 COHERENCE LENGTH

Substitute ~Js by
1

µ0

(▽× ( ~B − ~Bext)) and noting that ~Bext is constant and hence its curl vanishes we obtain,

▽× (
1

µ0

(▽× ~B)) = −4nse
2 ~B

m∗

⇒
▽2 ~B =

4nse
2µ0

m∗
~B

Where we have used the following identities

1) ▽ ×(▽ × ~B) = ▽(▽. ~B) − ▽2 ~B (20)

We know that ▽. ~B = 0 Hence
▽× (▽× ~B) = −▽2 ~B

2) ▽ ×(▽φ) = 0 (21)

The dimensions of the constant 4nse
2µ0/m

∗ is 1/(length)2. We define a length scale λ called the penetration depth
as

4nse
2µ0

m∗
=

1

λ2

to obtain

▽2 ~B =
1

λ2
~B (22)

The equation we have obtained is called the ” London’s Equation”. The solution of this equation yields the spatial
dependence of the magnetic field.

In one dimension, this reduces to
d2B

dx2
=

1

λ2
B (23)

The solution of this differential equation is of the form

B(x) = B+ exp (
x

λ
) +B− exp (

−x
λ

)

We will drop the first term because at infinity it blows up and this is unphysical. Hence the acceptable solution is

B(x) = B− exp (
−x
λ

) (24)

The variable ns associated with the order parameter is the number density of Cooper pair electrons. The value of λ is
approximately 10 nm for Type I superconductors and 100 nm for Type II superconductors.

Coherence length

Consider the first G-L equation. In the absence of a magnetic field we set ~A to zero. Further, we examine the supercon-
ducting phase T < Tc where α is negative. Thus

−|α|+ β|ψ|2 + 1

2m∗
(−h̄2∇2)ψ = 0 (25)

Rearranging
h̄2

2m∗|α|∇
2ψ + ψ − β

|α| |ψ|
2ψ = 0 (26)

We define a length scale ξ called the Coherence Length by setting ξ2 = h̄2/2m|α| Thus,

ξ2∇2ψ + ψ − β

|α| |ψ|
2ψ = 0 (27)

We assume that ψ is real and define f = ψ/ψ0 where ψ2
0 = |α|/β. Therefore,

ξ2∇2f + f − f3 = 0 (28)

which in one dimension becomes,

ξ2
d2f

dx2
+ f − f3 = 0 (29)

©Sitikantha Das and Vijay A. Singh 5
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Now suppose that there is an interface between a normal metal and a superconductor and that the y − z plane
separates the two so that the metal lies in x < 0 and the superconductor extends through x > 0. It can be verified that
the solution of the above equation subject to the boundary condition that the order parameter vanishes at the boundary
is given by:

ψ = ψ0 tanh(x/
√
2ξ) (30)

This shows that ξ sets the characteristic length scale over which the order parameter has recovered from 0 at the
surface to ψ0 in the bulk and is thus known as the ’coherence length’. For example very close to Tc the parameter α is
almost zero. Then ξ is very large which implies that the order parameter ψ ≈ 0 and superconductivity vanishes.

Note: The coherence length defined above is as per the literature in the field. It is different from the coherence length
defined by Pippard and we mention this so that the beginning reader may not be confused
.

Flux quantization

We found that in the discussion of the peneteration depth (which was based on the second G-L equation), the supercurrent
(Js) could be expressed as :

~Js ∝
(

∇φ+
2e ~A

h̄

)

(31)

Deep inside the superconductor Js = 0 and hence ∇φ = −2e ~A/h̄. Using Stokes’ law the magnetic flux,

Φ =

∫ ∫

~B.d~S =

∮

~A.d~l = − h̄

2e

∮

∇φ.d~l

As ψ(φ) = ψ(φ+ 2nπ) so that ψ remains single valued, when n is an integer. In polar coordinates

∇φ =
1

ρ

∂φ

∂α
α̂

where ρ is the radial distance and α the polar angle. Further the line element d~l = ρdαα̂. Hence the net change in the
phase ∆φ =

∮

∇φ.d~l = 2πn. Thus,

Φ =
nh

2e
(32)

and flux is quantized.
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Appendix
(Using Gauss Divergence theorem)

∫ ∫ ∫

V

▽.(~p.δψ∗)dv =

∮

S

~pδψ∗.~nds

Where S is the bounding surface of the superconducting sample. The momentum has no component perpendicular
to this surface, so

~p.~n = 0
∮

S

~pδψ∗.~nds = 0

Hence,
∫

V

▽.(~p.δψ∗)dv = 0
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