AN ANALYSIS OF GROWTH OF KNOWLEDGE BASED ON CONCEPTS AND
PREDICATES-A PRELIMINARY STUDY

Meena Kharatmal and Nagarjuna G.

Homi Bhabha Centre for Science Education, TIFR, Mumbai, India

meena@hbcse.tifr.res.in, nagarjun@gnowledge.org

Using the methodology of Refined Concept Mapping, we re-
represent the domain of cell biology of secondary and higher
secondary levels of textbooks. In this study, we demonstrate
that although the number of concept terms increase
progressively, the predicate terms achieve constancy
depicting a finite set. This indicates that for acquiring
expertise in a domain, a finite set of predicate terms is
sufficient. In this paper, we illustrate the methodology and
discuss the pedagogical implications of the study.
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INTRODUCTION

Cognitive development studies, in the context of teaching-
learning, compare the conceptual structures of novices and
experts in terms of coherence, abstractness, parsimony,
integration, explicitness, etc. (Brewer & Samarapungavan, 1991;
Karmiloff-Smith, 1995; Nagarjuna, 2006). During the growth of
knowledge, it is natural to expect an increase in vocabulary:
more the knowledge, more the terms. This indicates that new
knowledge is introduced through additional vocabulary.
However, the clarity of expressions, parsimony, coherence/
integration that we find in expert’s knowledge cannot be
accounted for, by a mere increase in vocabulary. Therefore, it
would be interesting to study the reasons for the above
mentioned characteristics of expert’s knowledge. This is the
problem addressed in this paper.

In the context of science education, language and technical
vocabulary are roadblocks. Typically students find the
scientific text unfriendly and difficult because of the use of
jargonified ‘scientific language’ that alienates them from the
scientific content (Halliday & Martin, 1993). Two contrasting
views are put forward: one group suggests that ‘jargons’ are
unnecessary and that the same meaning can be conveyed
using everyday language, and the others suggesting that
scientific content can be learned only when the language of
science is learned. So if there is a problem in the language,
then it is due to the matter of the subject itself. Halliday and
Martin (1993), claims that the problem is more often due to the
focus that is given on the technical terms and not in the

grammar. It is important to realize that technical terms
cannot be learnt in isolation, but have to be understood as a
part of a larger framework. The problem here, according to
Halliday and Martin (1993), is due to not making the
meaning explicit, not resolving ambiguities, and inappropriate
and excessive usage of grammatical metaphors. We shall
address the problem of understanding scientific terms in
the paper.

By following semantic holism (Quine, 1953), we characterize
knowledge as a network, where the meaning of a node (term)
arises by virtue of its position in the neighbourhood of the
node, rather than from the node itself. The semantic network
is a representation of knowledge hierarchically with
interconnected nodes and arcs (Quillians, 1967). In a semantic
network model, knowledge stored in frames is a network of
nodes and relations (Minsky, 1974). Most domains of
declarative knowledge is represented in the form of
propositions comprising of subject, predicate and object.
Graphically it is represented as a node-arc-node model (Novak
& Gowin, 1984; Sowa, 1984). This is the basis of the widely
used Resource Description Framework (RDF), a standard for
network oriented representation recommended by World Wide
Web Consortium (W3C)'. An outcome of this effort developed
into modelling knowledge in terms of ontologies wherein
concepts are referred to as classes, which take the place of
subject and object in a proposition, whereas predicates are
referred to as object properties (relation names) and data
properties (attribute names) (OWL)* We shall carry on this
legacy for investigating the problem.

One of the specific objectives addressed in this paper is based
on Kharatmal and Nagarjuna’s (2008) hypotheses that during
cognitive development from a novice into an expert:

(1) conceptual change happens due to re-writing the names
of relations, and not merely due to re-writing the names
of concepts,

(i) the rate of increase of relation names progressively de-
crease,

(i) the same relation names are used consistently eliminat-
ing ambiguity and
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(iv) the number of relation names required for a formal repre-
sentation in a given domain is not only finite but few.
The lesser the relation names, the greater the formal char-
acter of the representation.

We report here some of the empirical results that support the
above hypotheses. In the following sections, we describe the
methodology, observations, analysis and discussion followed
by implications to education and epistemology.

METHODOLOGY

The need to focus on the predicate terms for resolving
ambiguity and introducing rigor in representation of scientific
knowledge was explicated by Kharatmal and Nagarjuna (2006,
2008, 2010). Refined Concept Mapping (RCM) is a
methodology that uses a minimal and a least ambiguous set of
relation names consistently to represent a body of knowledge.
RCM is a development over the traditional concept map
(TCM). To cite a few illustrations, the linking words in a
textbook sentences, such as—is a, can be, has, may be, etc.
are often used in TCM. The problem with these kinds of linking
words is that they do not portray the exact meaning and at
times, gives rise to ambiguity (Sowa 2006). Our approach has
been towards resolving this ambiguity in the representation,
by focusing on the usage of the above linking words and
replacing them with semantically accurate relation names
(linking words) such as—part of, includes, surrounded by,
located in, has function, etc. We create concept maps by
applying the relation names defined in the relations ontology
(RO)? of the formal knowledge representation group, the Open
Biological and Biomedical Ontologies (OBO)*, and thus we
get what are referred as refined concept maps (RCM)
(Kharatmal & Nagarjuna 2006, 2010). Another important criteria
to be followed in RCM is to use the relation names consistently
throughout the domain. Emphasizing on relation names not
only facilitates in disambiguity, but also helps to maintain
parsimony in scientific representation. The current research
aims at re-representing the scientific knowledge in terms of
concept terms and predicate terms, which we refer to, as
Refined Concept Mapping (RCM). We follow the Knowledge
Representation (KR) model in which a proposition is mapped
as [concept name] — (relation name) — [concept name];
[concept name] — (attribute name with value).

For our study, the domain selected is of cell structure and
function, in classes 8, 9, 11 textbooks (NCERT 2007), focusing
on (limiting to) the topic of cell and its organelles. As this topic
is common in 8, 9, 11 classes it could enable us to study the
changes in the text when the complexity increases. The basic
elements of the study are concept names and predicate terms®.
The concept names are mostly the scientific terms. For instance,
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cell, nucleus, plastids, etc. are concept names. The predicate
terms include relation names and attribute names, and are
mostly depicted using the natural language. A few examples of
relation names are ---part of, surrounded by; and a few
attributes are---has size, has shape. To begin with, the verbatim
text is marked and each verbatim sentence is noted. In these
sentences, the linking words are highlighted. These are then
replaced with well-defined relation names and attribute names
thus transforming them into RCM propositions (see Table 1).
Our emphasis is only on the relation names, as part of
methodology, we try not to change the concept names.

Since our domain is biology, we draw from the Open Biological
and Biomedical Ontologies (OBO) foundry which is
collaboratively developing and publishing well-defined
relations that are released as the OBO Relation Ontology (RO).
For example the definitions of part of and located in are given
below:

part_of =def. For continuants: C part of C’ if and
only if: given any c that instantiates C at a time t,
there is some ¢’ such that ¢’ instantiates C’ at time t,
and ¢ *part of* ¢’ at t.

located _in =def. C located _in C’ if and only if: given
any c that instantiates C at a time t, there is some ¢’ such
that: ¢’ instantiates C’ at time t and ¢ *located_in* c’.

The rationale for choosing relation names from the RO is that
each and every relation name in the relations ontology has a
well-defined semantics, thus making the propositions precise
and unambiguous. In the light of OBO, the relation names are
categorized as foundational, temporal, spatial, participation
(Smith, et al., 2005). The relation names are chosen based on the
classification scheme based on the dimension—inclusion (class,
meronymy, (component-object, member-collection, portion-
mass, stuff-object, phase-activity, place-area, feature-event),
spatial), possession, attachment, attribution, antonym,
synonym, case (Winston, Chaffin, & Herrman, 1987). In the theory
of conceptual representations, the attribute names and their
values are represented in the form of the domains—color; shape,
etc. and region—red, round, etc. respectively, of any given object
(Gardenfors, 2000).

Now, we shall illustrate this methodology to transform
sentences from textbook into RCM propositions by replacing
the linking words by well-defined relation and attribute names
as shown in Table 1. RCM propositions follow the subject-
predicate-object structure and it need not be grammatically
correct, hence we eliminate the use of articles, prepositions in
the RCM.
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Verbatim Sentences TCM RCM RCM Propositions
1 | sharks can be great white shark, tiger can be includes sharks includes great white shark, tiger shark s
shark
2 | shark teeth can be big, small can be has size it is possible that, shark teeth has size big, small | 2'
3 | nucleus is a double layered membrane isa enveloped by | nucleus enveloped by double layered membrane
structure; structure 3
4 | nucleus is one of the organelles in a cell is one part of organelles part of cell; nucleus kind of 4"
of the kind of organelles
5 | nucleus is present in each living cell is present in part of nucleus part of each living cell 5!
6 | nucleus is small in animal cell is part of nucleus part of animal cell; nucleus has size 6'
has size small
7 | mitochondria have DNA and ribosomes have consists of mitochondria consists of DNA and ribosomes 7
8 | mitochondria have 2 membrane covering | have enveloped by | mitochondria enveloped by membrane;
membrane has number 2 8
9 | plastids are present only in plant cells are present part of plastids part of plant cells (only) 9
10 | materials such as starch, oils and such as includes materials include starch, oils, protein granules 10'
protein granules
11| chloroplasts are important for are important | has function | chloroplasts has function photosynthesis in s 11'
photosynthesis in plants for plant
12 | plant cells have very large vacuoles have has size vacuoles has size large (in plant cells) 12'

Table 1: Verbatim sentences and their conversion into RCM propositions. Notice the linking words from the verbatim
sentences and their replacement with predicate terms - relation names and attribute names in the

RCM propositions

In 1, 2 we eliminated ambiguous linking word can be by
replacing it with includes in 1' and has size in 2'. In the sentences
3-6 one single linking word is a is being ambiguously used for
four different meanings. This is eliminated by substituting the
appropriate relation names enveloped by, includes, part of,
has size respectively in 3'-6'. The ambiguity of is-a link is
already being pointed by experts in the field of semantic network
(Brachman, 1983; Quillian, 1967). Thus, along with rigor, the
substitution also helped in precise expression.

On similar grounds, the linking word /ave used in 7, 8 are
portraying two different dimensions, the first one is part and
whole dimension and the second one is spatial inclusion
dimension. It may implicitly connote the part-whole dimension
in the first sentence, but it lacks the precision that is required
in the second sentence that of spatial-inclusion. This has been
taken care by substituting with part of and enveloped by in 7',
8'. Similarly, the re-representation has been carried out of the
text of 8, 9, 11 classes where structure of cell is discussed
(NCERT 2007). The RCM propositions of cell structure and
function of classes 8, 9, 11 are graphically represented in the
form of refined concept maps and are available at http://
gnowledge.org/~meena/cell-biology/

OBSERVATIONS

One of the key points in our research work is of re-representing
knowledge with a finite set of predicate terms. We notice that as
the depth of the subject levels increase from 8-11, the number of
concepts are progressively increasing, but the number of
predicate terms do not increase at the same rate as that of
concepts, but achieves constancy at a point as depicted in Figure
1. The graph indicates that while concepts increase by a factor
of 6, the predicate terms increase by only about 1.5 times.

Constancy in Predicate terms

It may be noted that the number of concepts at class §, 9, 11
are 75, 195 and 430 respectively. However, at the same three
classes, the predicate terms are 10, 15 and 12. The predicates
are not increasing at the same rate as the concepts are
increasing. We can observe constancy in the number of
predicates which also depicts the possibility of a finite set.
This denotes that when new concepts get introduced, we do
not have to coin a new relation name, but the new concepts
can be mapped with a relation name from the given set.

Upon closer observation, we notice that much of the details
regarding the domain are introduced by using more attribute
names. We see saturation in relation names but attribute names
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do increase at a slower rate, these are 5, 6, 10 in classes 8,9, 11
respectively (Figure 1). It is interesting to note the proportion
of attribute names and relation names in the set of predicate
terms. More attribute names appear than the relation names as
the level of complexity increases as shown in Figure 2. This
indicates that as the depth of the domain increases in its
complexity, it is mapped in terms of assigning more of attribute
names and less of relation names (please see discussion).
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Figure 1: Graph depicting constancy in predicate terms even
when the concepts increase progressively in class 8, 9, 11.
(Note: the concept names are scaled on secondary y-axis)
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Figure 2: Graph depicting the proportion of relation names
and attribute names linked to the concepts in classes 8,
9,11

To illustrate a specific case, we compare a topic of
mitochondria, from class 9 and 11, and find that in class 11,
there appear 13 new concepts, while only 2 relation names are
added which are from the set, and 2 attribute names are
introduced. This indicates that when new concept names are
introduced, they are linked using a finite and constant set of
predicate terms. This explains why the number of predicate
terms does not increase as much as the concept names. This
observation confirms one of our hypotheses (ii) mentioned
earlier.
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relation names | C-8 | C-9 |C-11| |attribute names |C-8| C-9 |C-11
includes 15 | 27 | 80 | |has property 1|6 |10
consists of 19 | 36 | 77 | |has proportion 1|12
enveloped by 6 | 12 | 40 | |has unit 11
has function 6 | 45 | 54 | |has size 2 1 9
covered by 1 7 11 | |has number 1 9
located in 5 4 | 24 | |has shape 1 1 |10
contains 1 3 | 43 | |has length 4
composed of 3 9 39 | |has color 1 3 2
discovered 2 2 11 | |has arrangemen 1 2
attached to 4 16 | |has position 2
called 9 6

produced by 2

occurs as 3

appears as 4

formed by 18

divides by 5

traversed by 2

Table 2: List of predicate terms—relation names and attribute
names (emphasized) and the number of concepts that the
predicate terms are linked to in class 8, 9, 11, in the chapter
on cell biology

Set of predicate terms

As noted above, the predicate terms include the relation names
and attribute names. Once the domain is re-represented, it
enables us to determine the set of predicate terms that are
applied while transforming into RCM. Table 2 shows the list
of predicate terms including relation names and attribute names
(emphasized) and the number of concepts that these are linked
with, in all the three classes. Twenty relation names and 10
attribute names were sufficient to link about 400 concept names
applying the RCM methodology. The most widely used
predicates are consists of, includes, has function, surrounded
by, contains, covered by, located in, has size, has shape, has
property, has number.

DiscussioN AND IMPLICATIONS FOR
ScIENCE EDUCATION

In this paper, we have discussed the possibility of using a
finite set of predicate terms for refining the propositions from
secondary and higher secondary school textbook of a domain.

Significance of predicates in Knowledge Representation dates
back to Plato. The two widely used relations, type of (subclass
of) and instance of (member of), became the basis of formal
logic and set theory. These two relations form the core of any
inference and they serve as the cement of all thought. The
richness of the meaning, however, cannot entirely be captured
using only these two relations. This may give us an indication
that richness of meaning remains within concept space and
not in the predicate space. However, as our study indicates,
the required number of predicates do not explode as knowledge
increases. The predicates used in science, including those
used in Table 2 above for representing biology, are indeed
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only those that apply across disciplines because of their general
character. They do not remain domain specific, even though
concept names are. Thus concept names are explicated by
means of a finite set of predicates, irrespective of the domain
they may describe. However, we do not rule out the need of
special predicates like charge or charm to describe something,
say, the fundamental particles.

Predicates are considered the main constituents of symbolic
representation based on first order logic (Gardenfors, 2000, p.
37). Modelling of scientific knowledge by focusing on the
“predicate space” is elaborated by Gardenfors (2000), who
calls them “conceptual spaces”. As the recent spurt of activities
in semantic web indicate that the knowledge representation
studies in computer science also focus on predicate space.
Also, they do focus on creating ontologies for different
domains. Predicate logic is used explicitly in describing
concepts and their relationships, while creating formal
ontologies like that of biomedical ontology (Nilsson, 2006).
The explicit use of predicates exemplified with constraints in
conceptual graphs (Sowa, 1984) has also been one of the
insights that we have drawn from focusing on well-defined
relation names in characterizing knowledge. A list of well defined
set of predicates is available in the appendix of the textbook of
conceptual graphs (Sowa, 1984). Selection of attributes for KR
has been considered to be of prime importance in designing
expert systems. Modelling of real world process requires one
to choose a small set of attribute names (Tirri, 1991 cited in
Gardenfors, 2000). Also, when we consider the realm of
scientific knowledge, the study and changes in the attribute
names can represent the dynamics of structure of an object.
For representing processes, we often use the change in state
space of an object. This change is described by the change in
the values of an attribute from prior state to post state. This
explains the need to focus on the attribute space.

According to the semantic view of scientific theories, the
models are used as predicates in scientific knowledge (Giere,
1992; Stegmuller, 1976; Suppe, 1977; Van Fraassen, 1980).
Stegmuller (1976) calls scientific models as complex predicates.
Model based reasoning studies by --Nersessian (1999) also
suggest that the core of scientific knowledge lies in the
modeling of a domain.

Considering that all quantitative predicates (size, volume,
position, charge etc.) fall in the attribute space, it is reasonable
to assume that the required change in the conceptual structure
from a school to a college text consists in explicating the domain
in terms of attributes, particularly quantitative attributes. The
increase in attribute terms in the current study explains the
introduction of the required predicates for building the
scientific model as the students progress from school to
college level. As a continuation of the study, we intend to
explore that the number of predicate terms do not increase
substantially from college to university to research levels.
Based on our epistemic position, we predict that their number
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will also remain constant. We do expect similar results for other
domains of science, though only further studies will confirm
our prediction.

The significance of mapping knowledge using RCM
methodology by focusing on the predicate terms has been
proposed earlier (Kharatmal & Nagarjuna, 2006, 2010). It was
observed in a study that rigor, which is one of the hallmark
criteria of scientific knowledge, is rooted in the predicate terms
and not in concept names. Further, drawing from this study, a
comparison of students, teachers and experts’ representations
was shown in a subsequent study and it was found that experts
tend to focus on the appropriate and consistent usage of the
predicate terms (Kharatmal & Nagarjuna, 2008, 2009).

This study continues in the same vein, and further offers new
insights and opens up an alternative and simpler way of
analyzing the growth of knowledge, specifically scientific
knowledge. If this line of thinking is valid, the pedagogical
implications could be: the emphasis of training in school and
college should be on the use of predicate terms instead on the
concept names, for they can be substituted by any variable.
The epistemological implications could be: when scientific
knowledge becomes increasingly quantitative, the correlations
between attribute values should become the focus, when the
phenomena are described using functions. Since functions
are operationally defined predicates, the meaning is more
explicit than the declarative predicates (cognitively grounded
predicates) used in early life. Thus during cognitive
development, knowledge develops by re-representation of
declarative predicates by more and more operationally defined
concepts (Nagarjuna, 2006). Thus by focusing on predicate
space, it is possible to analyze the growth of knowledge.

In this preliminary study, we attempted to show how a concrete
empirical research program to substantiate an epistemological
standpoint can be conducted, adding weight to a naturalized
evolutionary epistemology program.

NoTES

' World Wide Web Consortium. http://www.w3.org

20OWL: Web Ontology Language. http://www.w3.org/TR/owl-
features/

3The OBO Relation Ontology. http://www.obofoundry.org/ro/

4 The Open Biological and Biomedical Ontologies.
http://www.obofoundry.org

5 The usage of the term “linking words” is in the context of
TCM or verbatim sentences of the text, while the usage of the
term “relation names” and “attribute names” are in the context
of RCM propositions.
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