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Introduction

The topic area of fractions is acknowledged to be difficult for school students to learn. We began 
working on approaches to the teaching and learning of fractions as a part of the elementary 
mathematics curriculum development initiative at the Homi Bhabha Centre. This led us to ask 
questions about why the topic of fractions is important and to ask how it is connected to other 
topics in school mathematics. I’ll begin this review by addressing this question, and how the place 
of fractions in the curriculum is understood in the light of the research of the past few decades. 
I’ll then describe the main trends of the intensive phase of research on rational number learning in 
the period between the mid-1970s to the mid-1990s. Extensions of this research in the subsequent 
period together with some new strands are addressed next. There is a need to integrate this vast body 
of research findings in a manner that can impact curriculum design and teaching. I end the review 
by sketching lines of research that can help in meeting this goal. 

The reasons commonly cited to justify the inclusion of fractions in the traditional curriculum 
are: (i) the fraction concept forms the conceptual basis for decimals and percentages and (ii) the 
arithmetic of fractions is needed for algebra. These are valid reasons for giving importance to 
fractions in the curriculum. Elaborating on these reasons, we may say that there are three topic 
areas for which fractions are important. Fractions arise naturally in connection with measurement. 
We quantify continuous magnitudes like length by choosing a unit and we may need to subdivide 
the unit for greater accuracy. Fractions are needed to express and compute with measures that 
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are smaller than the chosen unit. Secondly, fractions are useful in dealing with proportionality, in 
expressing ratios, in comparing and manipulating them. Finally, the fraction notation and fraction 
operations are needed in algebra to express quotients and to operate with them. 

We note that the topic area of measurement actually requires only a subset of fractions. In 
modern scientific measurement contexts, only decimal fractions, notated using the decimal point, 
are used. In contexts from the everyday world and beyond, the use of percentage to approximate 
ratio is convenient because it recasts the ratio or fraction in question as a fraction with denominator 
100, a salient fraction in the decimal system. Earlier times and cultures used other subsets of 
fractions. For example, the British subdivisions of the inch were in binary fractions (½, ¼, ⅛, etc.) 
and the astronomers of ancient Iraq computed with sexagesimal or base 60 fractions. The fact that 
measurement contexts can make do with a subset of fractions has sometimes led educators to argue 
for including only decimal fractions in the curriculum, and to abandon fractions in general and 
especially the arithmetic of fractions (Varma & Mukherjee, 1999). However, the exploration of 
multiplicative relationships in a variety of contexts and the use of the fraction notation in algebra 
requires rational numbers in general and hence fractions beyond the decimal fractions. 

Why are fractions useful in the contexts discussed above and what is common to these 
contexts? We find that all of them involve multiplicative relationships between magnitudes, 
quantities and numbers. Fractions are the basic tools in dealing with such relationships. By 
multiplicative relationship, I mean a mathematical relation between magnitudes, quantities and 
numbers constituted by the multiplication operation. The division operation is included here as the 
inverse of the multiplication operation. A familiar kind of multiplicative relation is the ratio. Additive 
comparison of two magnitudes is a judgement about additive relationships: how much larger or 
smaller a magnitude is than another (“my brother is two inches taller than me”). Multiplicative 
comparison is about the multiplicative relation between magnitudes: how many times the smaller 
magnitude is the larger or vice versa (“I am twice as tall as my daughter”). This relation is often 
expressed as a ratio. Multiplicative comparison is at the heart of measurement, which is essentially 
answering the question “how many times the unit is the target measure?” 

Situations involving proportional relationships need one to not only make multiplicative 
comparisons, but to grasp that certain multiplicative relations in the situation remain constant or 
invariant. For example, suppose one needs to use a recipe written for two persons to prepare a 
dish for five persons. While recalculating the ingredients in the recipe, one assumes that the ratio 
between the number of people and the quantity of each ingredient in the recipe is constant. This is 
an example of a direct proportion. The situation of inverse proportion is different: If a bag of rice 
is enough to feed 12 people for 15 days, how many days can 20 people be fed with the bag of rice? 
Here the invariant multiplicative relation is not the ratio but the product of the number of people 
and the number of days.

Multiplicative thinking or multiplicative reasoning (these two phrases are used interchangeably 
in this review) involves grasping multiplicative relationships in situations and dealing with them 
mathematically in appropriate ways. It means not only reasoning about quantities and their 
relationships but also the ability to represent the relationships mathematically and facility with 
generating and transforming representations. One reason for teaching fractions is that they are useful 
tools for solving problems requiring multiplicative reasoning. But fractions are not only tools, they 
also create learning opportunities. From the pedagogical point of view, the topic of fractions is 
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important because it offers an opportunity to develop multiplicative reasoning. As children grasp 
the meaning of the fraction notation and interpret it in contexts, as they learn to compare fractions, 
and as they learn to apply fractions, their multiplicative reasoning develops. This is an additional 
pedagogical justification for including the topic of fractions in the curriculum. 

Researchers who studied the teaching and learning of fractions in the 1980s recognized that 
fractions are an integral part of a larger connected network of topics in mathematics which includes 
multiplication and division, measurement, proportionality, and at higher levels includes linear 
functions and vector spaces. This connected network of topics has a vast vertical elaboration and 
has been described as the ‘multiplicative conceptual field’ (Vergnaud, 1994) and the underlying 
related ideas as ‘multiplicative reasoning’ (Harel & Confrey, 1994). The mathematization of many 
aspects of reality involves identifying and expressing linear relationships between quantities or 
magnitudes that are varying. In actual practice, dealing effectively with linear relationships can be 
complex and call for thoughtful application of mathematical ideas and tools.

Some researchers prefer to use the phrases ‘rational number’ and ‘intensive quantity’ to refer to 
the core constructs that underlie multiplicative reasoning. We need to clarify the use of these terms. 
‘Rational number’ is unambiguously defined in mathematics as a number which can be expressed 
in the form p/q where p and q are integers and q ≠ 0. In the elementary school curriculum, only 
sub-sets of rational numbers are first introduced to students, making it necessary to use a different 
term, namely ‘fractions’. The term ‘fraction’ is used to mean different things and we can distinguish 
a narrow and a broad sense. In the narrow interpretation, fractions refer only to the positive rational 
numbers. Fractions may also be interpreted broadly to refer to any real number expressed using 
the fraction notation and may include such numbers as π/2 (Lamon, 2007). I prefer to use the term 
‘fraction’ in the broad sense. Even though the scope of this review requires only the narrow sense, it 
is useful to keep the broader sense in mind since it reminds us of the connection that fractions have 
with topics beyond the elementary mathematics curriculum. Sometimes I use the phrase ‘fraction 
notation’ to explicitly indicate the broad sense, and to also refer to ‘fractions’ involving variables 
and numerical or algebraic expressions. ‘Negative’ fractions (i.e. fractions marked by the use of the 
“–” sign), do not figure in this review which discusses issues concerning the teaching and learning 
of fractions, since negative numbers constitute, pedagogically speaking, an important and different 
topic domain. 

The term ‘rational number’ is used widely in the literature, even though most studies discuss 
only positive rational numbers (i.e., fractions in the narrow sense). So I will use this term frequently 
in this review interchangeably with ‘fraction’. Finally, we must abandon one especially narrow 
interpretation of fractions. Sometimes teachers and educators hold an exclusive part-whole 
interpretation of fractions, which excludes even fractions greater than one as ‘improper’. Such an 
interpretation is neither mathematically compelling nor pedagogically fruitful. 

Intensive quantities, which are contrasted with extensive quantities, are familiar from contexts 
in physics. Extensive quantities like mass, length, volume, time, vary with the extent of matter or 
‘substance’, while intensive quantities like density, speed, pressure are ratios of extensive quantities 
and do not depend on how much substance there is. More generally, intensive quantity can mean 
any ratio. The concentration of orange juice may be expressed as a ratio of concentrate to water, 
an intensive quantity. Probabilities are expressed as ratios and are hence intensive quantities. It 
is reasonable to hypothesize that understanding intensive quantities and the numbers that denote 
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them (ratios or rational numbers) is more difficult than understanding extensive quantities and the 
numbers that denote them. Nunes and Bryant (2008) make this hypothesis and suggest further that 
one of the chief justifications for teaching fractions or rational numbers is that they are needed 
not only to express but also to conceptualize intensive quantities. Ratios and intensive quantities, 
as I suggested earlier, are instances of the multiplicative relation between quantities. The term 
‘multiplicative relation’ is more general and includes ratios, as well as the relation between factors 
and products.

To summarize, fractions have an important place in the curriculum not only for the utilitarian 
reasons of being useful in computation in arithmetic or algebra. Fractions are also important 
for conceptual reasons. The topic of fractions provides an occasion to strengthen multiplicative 
reasoning. Fractions extend children’s concept of number, making it possible to quantify extensive 
as well as intensive properties and to connect numbers and measures more fully. In the following 
section, we will elaborate on what is meant by multiplicative reasoning and then discuss the issue 
of the relation between fractions and multiplicative reasoning.

The Development of Multiplicative Reasoning

To many mathematically literate adults, proportional thinking is natural and it may seem that there 
is no reason to emphasize an idea that is rather obvious. But the fact that multiplicative relationships 
are internalized well by adults does not mean that it is easy or trivial for children. Multiplicative 
reasoning is cognitively demanding. As we have noted, quantification of magnitudes like length and 
weight also involves multiplicative thinking. Quantification of measures is a significant cognitive 
achievement in itself. Attending to the relation between quantities is a higher order capability. For 
Piaget, proportional thinking was an instance of this higher order thinking because it involved 
grasping the relation between relations (Piaget, 1952). Direct proportional relationships are those 
in which the ratio of two varying quantities remains the same – understanding direct proportion 
involves perceiving the equivalence (relation) between two ratios (relations). Inverse proportion 
situations are also instances involving the comparison of the multiplicative relation between 
quantities. One must comprehend the invariance of the product and the compensating multiplicative 
relation between the quantities that are varying.

Given the wide range of multiplicative thinking, one may expect it to develop gradually over 
an extended period. We can distinguish two broad phases of development. The early phase, which 
is marked by the development of multiplicative reasoning as an informal capacity, involves the shift 
from additive thinking to recognizing and dealing with simple proportional relationships.

Researchers studying the early development of multiplicative thinking interpret it as a 
hypothetical mental construct, underlying children’s responses to proportion problems (Empson, 
Junk, Dominguez & Turner, 2005; Tzur et al., 2012). We illustrate this sense of multiplicative 
thinking with an example taken from our work with young children. Figure 1 below shows the 
responses from two grade 4 students to the problem: “if 12 ladoos cost Rs 32, how much will 15 
ladoos cost?” Student A concludes that 15 ladoos will cost Rs 35. On prompting with a further 
question, he says that 6 ladoos will cost Rs 26. This is an example of what is usually called ‘additive 
thinking’. 
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Student B in contrast struggles to solve the problem by trying to find the cost of one ladoo. 
When this proves too difficult, he is asked by the researcher if he can solve the problem without 
finding the cost of one ladoo. He then finds the cost of 6 ladoos as Rs 16, and the cost of 3 ladoos as 
Rs 8. Adding 32 and 8, he finds the cost of 15 ladoos as Rs 40. B’s solution as well as the reasoning 
process is different from that of A. A sets up the correspondence between costs and ladoos as 
‘one unit for one unit’: 12 ladoos cost Rs 32, 13 cost Rs 33, and so on. B sets up a multiplicative 
correspondence between quantities which are in multiple units: 12 ladoos cost Rs 32, so 6 ladoos 
(half of 12) cost Rs 16 (half of 32), and so on. Here 12 ladoos are treated collectively as a unit 
or, to use the more precise phrase, as a ‘unit of units’. Thus one difference between additive and 
multiplicative thinking is that the former involves a 1-1 correspondence between singleton units, 
while the latter involves a 1-many or a many-many correspondence between units of units. 

‘Build-up’ strategies of the kind displayed by student B are commonly found in the spontaneous 
‘unschooled’ solutions to proportion problems by both children and adults (Nunes & Bryant, 2010). 
Such strategies indicate only the beginnings of multiplicative thinking. When the numbers are 
awkward, build up strategies may break down. Studies have found incorrect build up strategies 
which combine multiplicative and additive thinking (Misailidou & Williams, 2003). The following 
can serve as an example. Problem: if 12 ladoos cost Rs 32, how much do 19 ladoos cost? Attempted 
solution: 12 ladoos → Rs 32; 18 ladoos (12 + 6) → Rs 48 (32 + 16); hence 19 ladoos cost Rs 49. The 
prevalence of such strategies suggests that the further development of multiplicative thinking from 
an informal capacity to a mathematical ability needs the explicit use of the multiplication operation, 
supported by the use of multiplication facts and procedures. 

  

Student A: Rs 32 for 12 laddoos; 
Rs 35 for 15 and Rs 26 for 6.

           
Student B: Rs 32 for 12 laddoos; 

Rs 16 for 6 and Rs 40 for 15.

Figure 1: Responses of 2 students to the question: if 12 ladoos cost Rs 32, 
how much do 15 ladoos cost?

Once children begin to use multiplicative strategies with assurance, the second broad phase 
of its development is underway. This involves the application of multiplicative thinking to diverse 
situations beyond those involving simple, direct proportional relations. Examples are situations 
of inverse proportion and multiple proportions. The latter are situations where one variable is 
directly proportional to two or more variables. For example, the rice ration for a group of persons 
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varies linearly as the number of persons as well as the number of days. Other situations where 
the multiplicative relation is important are those where the product of measures is salient. These 
include situations involving geometric attributes such as area and volume and physical quantities 
such as moment of a force/weight. Many situations involving such attributes require the co-
ordination of multiplicative strategies with spatial or physical reasoning (Rahaman, Subramaniam 
& Chandrasekharan, 2012). Another important development is distinguishing between situations 
where it is appropriate to assume proportionality and situations where it is not (De Bock, Van 
Dooren, Janssens & Verschaffel, 2002). Within mathematics, a variety of topic domains call for 
multiplicative reasoning: whole number multiplication and division, fractions, decimals, ratio, 
percentages, proportionality and linear functions. Further development leads to competence in 
using linear relationships as tools in the analysis of situations which involve complex relationships 
between quantities as in calculus. Thus multiplicative thinking forms the backbone for a large part 
of the mathematics curriculum in school and beyond. 

The examples of informal proportional reasoning that we have seen involve partitioning and 
chunking quantities in appropriate and convenient ways. The learning of fractions brings forth 
many opportunities to develop facility in partitioning and convenient grouping. Further, fractions 
greatly expand the range of proportional situations that can be handled, including those where the 
whole numbers involved are not multiples of other numbers and where the quantities themselves are 
in fractional units. Fractions also are a handy notation to express ratios and multiplicative relations 
in general. Some of the themes of research in the period discussed below offer ways of analysing 
the basic constructs underlying fractions and multiplicative reasoning.

Research on the Learning of Fractions and Multiplicative 
Reasoning from the Mid-1970s to the Mid-1990s

The fact that fractions is a difficult topic for students to learn has been recognized for long. Piaget’s 
studies had a major role in resetting the agenda of researchers who were studying children’s difficulties 
in learning fractions. Research prior to the influence of Piagetian constructivist psychology focused 
on the details of student errors in implementing computational algorithms in fraction arithmetic, 
on the hierarchy of skills needed for the arithmetic of fractions, on how to teach algorithms and on 
how fraction manipulatives can help (Novillis, 1976; Payne, 1976). Piagetian ideas began to shape 
mathematics education research in the 1960s and early 1970s, first in the topic domain of whole 
number learning and then in the learning of rational numbers and other topics (Steffe & Kieren, 
1994). The period from the mid 1970s to the mid 1990s witnessed an intensive phase of research on 
rational numbers mainly by researchers in North America and Western Europe. In this section, I’ll 
summarize the research done during this phase under four main themes followed by remarks about 
how these themes and ideas have continued to influence later research. 

Fraction Subconstructs

The impact of Piagetian studies on mathematics education together with the influence of the earlier 
school of gestalt psychologists, led researchers to focus on issues of meaning and understanding 
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in learning mathematics. Thomas Kieren (1976, 1988) offered an analysis of the fraction concept 
that went beyond symbolic and computational aspects. Focusing on how fractions are interpreted 
in diverse situations, he argued that the fraction concept is composed of several sub-constructs. 
The idea of sub-construct was taken from the philosopher of science Henry Margenau, who made 
a distinction between fact and mental construct. Facts belonged to the level of objects in the real 
world. Constructs, which were furnished by the mind, belonged to a hierarchy of levels increasingly 
removed from the world. Mathematical constructs were distant from the real world. Intermediate 
between the mathematical construct of rational number, and facts in the world, there were sub-
constructs that interpreted fractions in terms of a real world context or situation. 

Kieren distinguished five sub-constructs of fractions: part-whole, measure, ratio, quotient 
and operator. The part-whole subconstruct is familiar from standard area diagrams in textbooks 
where the fraction indicates a shaded part of a whole. Most diagrams show both the shaded and the 
total area as composed of equal sized parts, although explicitly showing this is not necessary. The 
measure subconstruct is exemplified in contexts where measures are denoted by fractions: 3½ kg, 
1.25 m, half an hour, etc. The representation closest to the measure subconstruct is the numberline, 
where fractions smaller than or larger than 1 can be represented. The ratio sub-construct arises in 
situations involving not only part-whole but also part-part comparisons such as the ratio of boys to 
girls in a class. Ratios may also encode comparisons of magnitudes not related as parts or wholes, 
for example, in comparing two adjacent sides a rectangle. Ratios may also encode comparisons of 
quantities belonging to different measure spaces (e.g. two spoons of sugar per cup). 

The quotient sub-construct encodes the result of the division operation. A familiar context 
embodying this interpretation is the situation of equal sharing. When 2 rotis are shared equally 
among 3 children, the share of each child is 2 ÷ 3 = 2/3 roti. For many children, it is surprising that 
when m units are divided equally among n persons, the share of each person is simply m/n unit. The 
operator sub-construct has the sense of ‘a fraction of a certain quantity’, as for example, when we 
say that we have covered 2/3 of a total distance of 60 km or that ¾ of a 500 ml packet of ice-cream 
is over. 

Although the sub-constructs are all derived from the mathematical construct of rational 
number, they have slightly different meanings, are connected to different contexts, and have 
distinct meanings and possibilities for the various operations with fractions. Addition is easy to 
interpret in terms of the measure sub-construct, but is difficult in the case of the ratio sub-construct. 
Multiplication is easy to interpret in terms of the operator or ratio sub-construct. Fractions greater 
than one are difficult to interpret strictly within the part-whole construct. 

Kieren proposed that the difficulty of learning fractions was due in part to the multiple 
interpretations of fractions that students had to internalize. The curriculum did not help much since it 
typically focused only on one or two of these interpretations. Kieren’s suggestion was to use a variety 
of contexts to allow for the development of the whole range of sub-constructs. In later publications, 
Kieren developed an integrated framework for progression from fraction sub-constructs to other 
multiplicative concepts leading on to the formal understanding of rational numbers as a quotient 
field (Kieren, 1993). Kieren also developed test items to assess students’ understanding of fractions. 
His finding that students tend to perform differently on items related to the different sub-constructs 
provided evidence for distinguishing between the sub-constructs. The sub-construct theory had an 
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impact on other researchers who explored the semantics of the concept of fractions, and developed 
an analysis of how students’ reasoning proceeded with regard to the different subconstructs. We 
shall discuss the semantics of partitioning and unitizing in a later subsection.

Semantics of the Multiplication Operation

In the 1980s, not only fractions, but other core topics in the middle school mathematics curriculum 
became central topics of research. Several researchers focused on students’ difficulties with the 
multiplication operation. As students move to the middle school, the multiplication operation 
becomes more prominent than the addition operation and is extended to new contexts calling 
for new interpretations. This presents challenges to students who have by then developed robust 
conceptions of whole numbers and operations on them. Students are first introduced to multiplication 
as repeated addition, but this interpretation is limited and unhelpful in many contexts which involve 
proportionality or multiplication of rational numbers (Hiebert & Behr, 1988). Intuitive notions such 
as ‘multiplication makes numbers bigger’ or ‘division makes smaller’ developed while dealing with 
whole numbers become restrictive and misleading (Fischbein, Deri, Nello & Marino, 1985). 

The semantics associated with the multiplication operation is significantly different from the 
addition and subtraction operations. Schwartz (1988) pointed out that the vast majority of situations 
involving the multiplication operation follow the I × E = E′ pattern: an intensive quantity multiplied 
by an extensive quantity yields another extensive quantity as a result. The example below follows 
this pattern:

Cost of 5 kg of potato: 

cost in Rs per kg × weight in kg = cost in Rs

32 (Rs per kg) × 5 kg = Rs 160

The first quantity, cost per kg, is an intensive quantity. The second quantity, weight, is an 
extensive quantity. The product is neither of these two quantities, but a third quantity, cost, which 
is an extensive quantity. Schwartz called multiplication a ‘referent transforming’ operation, since 
quantities are not preserved by the operation, unlike in the case of addition (rupees + rupees = 
rupees). 

The multiplication operation is referent transforming even when the pattern is different from 
the one instantiated above. Consider for instance a different pattern: E × E = E′. Here two extensive 
quantities are multiplied to yield another extensive quantity. An instance of this pattern is:

Area of a rectangle: length (cm) × breadth (cm) = area (cm2)

In some cases, multiplication keeps one of the referent quantities being multiplied unchanged. 
In unit conversion situations (expressing a length given in inches in terms of cm) the quantity does 
not change, but the unit does. In scalar comparison or transformation (“I am twice as heavy as I 
should be” “Double the quantity of rice ordered!”), neither the quantity nor the unit changes.

Schwartz’s analysis significantly called attention to the role of intensive quantities in situations 
commonly modelled by multiplication and the focus on the nature of quantities and units in the 
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multiplication operation. Even though it did not illuminate children’s difficulties in specific ways, it 
provided insights about what was conceptually important in teaching for developing multiplicative 
reasoning. It was also suggestive of ways in which curricular goals could be organized to link the 
development of multiplicative thinking with quantification and mathematical modelling. However, 
these suggestions have not been explored in a systematic manner in subsequent research studies.

Missing value proportion problems are a critical launching point for the development of the 
multiplicative conceptual field. These are problems where three quantities of a proportion are given 
and the fourth is required to be found. Vergnaud (1988) provided a comprehensive analysis of 
missing value proportion problems and student solution strategies arising in simple and multiple 
proportion situations and situations involving products of measures. Vergnaud noted the similarity 
between product of measures and multiple proportion situations. He also found a preference for 
working with scalar ratios (within measure space ratios) among students. These contributions are 
well recognized and described in several reviews of the field (see for example, Lamon, 2007).

Semantics of Partitioning and Unitizing 

A group of researchers from several U.S. universities implemented a long term research programme 
on the teaching and learning of fractions called the ‘Rational Number Project’ from 1979 to 
the 1990s (See http://www.cehd.umn.edu/ci/rationalnumberproject/). Wide ranging research 
studies were undertaken on fraction learning as well as proportional reasoning using a variety of 
methodologies including the teaching experiment. The efforts of the RNP group of researchers were 
important in bringing together and intensifying research on rational number learning. An important 
theoretical contribution made by this group of researchers was the semantic analysis of the unit 
concept, which connected multiplicative thinking and fractions. In many instances, a given quantity 
may be conceptualized in terms of different units. To take a simple case: 3 rotis may be thought 
of as just 3 single rotis or as one packet of 3 rotis. In the notation used by the researchers the first 
case would be notated as 3 [(1-unit)s], while the second as 1[(3-unit)] (Behr, Harel, Post & Lesh, 
1992). An important aspect of multiplicative thinking and fraction understanding is the ability to 
conceptualize the same quantity in terms of different units in a flexible manner, described by the 
phrase ‘flexible unitization’. 

Figure 2 illustrates, following Lamon (2005), progressively more complex conceptualizations 
of the unit. The ratio unit puts two units in correspondence: 3 units per person. Conceptualization 
of the ratio units lies at the heart of multiplicative thinking. In the example of children’s 
thinking discussed earlier (see Figure 1), the successful strategy used by Student B entails the 
conceptualization of the ratio unit Rs 32 for 12 ladoos, and the knowledge that this is the same as 
the unit Rs 16 for 6 ladoos. The analysis proposed by Post et al. envisages intermediate steps such 
as Rs 32 for 1[12-unit] or Rs 32 for 2 [6-units], hence Rs 16 for 1[6-unit]. Their work presented 
detailed notations for such transformations involved in proportional and multiplicative thinking. 
Although, this detailed analysis has been directly used by very few researchers, the closely related 
idea of children’s fraction schemes has informed the perspective of several researchers. 
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Figure 2: Conceptualizing units of different kinds.

The basic idea of flexible unitization however is powerful and has been developed in fruitful 
ways in the work of Susan Lamon (2002). Lamon’s tasks combine partitioning with unitizing in 
ways that encourage students’ reasoning. Figure 3 shows a task that is powerful in eliciting a variety 
of reasoning strategies from children. The shaded part of a rectangular area is unitized in different 
ways to give different, but equivalent fractions. 

Figure 3: Partitioning and unitizing in flexible ways: the rectangle on the left shows the fraction 12/20, 
which can be measured with each of the units shown in the rectangles on the right to arrive at the 

equivalent fractions (left to right).

 
1

1
3 6 3 22, , , ,

1 15 10 5
2 3

2 3

. (Adapted from Lamon, 2002.)

Exploring the Equal Sharing Context as a Starting Point for 
Teaching Fractions

Most textbooks present fractions initially as parts of a whole by partitioning the area of shapes such as 
circles and rectangles into equal parts. A context in which the act of equipartitioning arises naturally 
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is when a whole is to be equally shared among several persons. Such contexts are close to the life 
experience of children. It is hence surprising that most textbooks in India, and perhaps elsewhere, 
do not use this context to introduce and develop the concept of a fraction. In the 1980s, the use of 
sharing contexts to teach fractions was explored in detail in instructional settings through the work 
of Streefland (1993). Streefland was a researcher at the Freudenthal Institute, where the Realistic 
Mathematics Education approach was developed. In terms of the fraction sub-constructs discussed 
above, this approach exploits the quotient sub-construct, where the fraction p/q is interpreted as the 
share of each person when p wholes are shared equally among q persons. 

The equal sharing context is powerful in realizing several instructional goals. It introduces a 
motivation for equal partitioning of a whole, which is lacking in the purely part-whole approach. 
It is useful in communicating the idea that a fraction denotes a quantity and a sense of how large 
the quantity is. Comparison tasks set in sharing contexts elicit a variety of strategies from children 
and support their reasoning about fraction magnitude. Similarly sharing contexts are helpful in 
understanding and generating equivalent fractions. The sharing context can be extended to make 
sense of the addition and subtraction of fractions. Many of these aspects have been explored and 
implemented in fraction instruction in the last few decades, including by researchers in India (for 
example, see Subramanian & Verma, 2009). One important issue to address is to lead students from 
interpreting the fraction as composed of two different quantities to understanding it as denoting a 
single quantity. For example, 2/3 is not only 2 rotis for 3 people, but the quantity of roti in one share 
(2/3 of one roti). One way of dealing with this is to connect the share and the measure interpretation 
together in an explicit manner (see Naik & Subramaniam, 2008). Figure 4 shows an example of a 
student’s work of this kind.

Figure 4: Connecting the quotient (left) and the part-whole (right) interpretations of the fraction 3/8.
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Overview of the Research on Rational Number Learning from 
the Mid-70s to the Mid-90s

I have summarized what appear from the present standpoint to be some of the more important 
contributions of this period of research. It should be mentioned that although this period saw 
intensive research, its impact on curricula and actual teaching was limited, perhaps because the 
research findings could not be easily integrated to yield a coherent picture. Reviewing the research 
of the period, Hunting, Davis and Pearn (1992) drew the rather pessimistic conclusion that “no real 
progress was being made”(quoted in Lamon, 2007, p. 646). Another reason for the lack of impact 
on actual instruction may have been the distance of the research studies from actual classroom 
settings. Behr et al. (1992) remarked that teaching intervention studies on the topic of fractions 
were limited. Streefland’s (1993) work that we have referred to above was an exception in making 
instructional approach the central focus of research, and in adopting the teaching experiment as the 
basic methodology. In the 1990s and later, teaching experiments became more numerous. 

In the perception of one of the leading researchers (Lamon, 2007), the period after the mid-
90s saw relatively less attention to the topic domain of rational numbers on the part of researchers. 
Although these remarks seem pessimistic about the impact of the research done in the 80s and 90s, 
and about the intensity of work done subsequently, this may need to be qualified. Lamon herself 
has authored  a book, Teaching Fractions, Ratio and Proportion, which illuminates the core initial 
fraction ideas and the connections between fractions and proportional reasoning in detail (Lamon, 
1996, 2nd edition, 2005). The book, which includes many examples of students’ reasoning and a 
large repertoire of activities for students and teachers, exemplifies pedagogical content knowledge 
in this topic domain and is useful to teachers and curriculum designers. The work of Streefland and 
his colleagues at the Freudenthal Institute discussed above has had an impact in making the sharing 
context central to many approaches to teaching fractions. van Galen et al. (2008) draw on this and 
other work to formulate teaching-learning trajectories for the topic of fractions, proportion and 
percentages.

Much of the work done in the decades of the 1990s and 2000s extended the themes of the 
earlier phase of research. The sub-construct theory illuminates students’ difficulties with fractions, 
points to the need for moving beyond the part-whole interpretation of fractions and provides a 
guideline for instructional design. Hence many researchers have assumed that fractions have multiple 
interpretations in different contexts and have based their studies and discussions on this assumption. 
Views about the efficacy of simultaneously teaching several interpretations of fractions diverge. 
While some studies have claimed efficacy for teaching multiple interpretations simultaneously 
(Moseley, 2005), others have argued that one interpretation must be dealt in depth so that students 
can reason confidently on the basis of that interpretation (Lamon, 2007). Some researchers have 
attempted to directly test the explanatory power of the sub-construct theory, but have not succeeded 
in establishing clear support for all the sub-constructs identified by the theory (Charalambous & Pitta-
Pantazi, 2007). The equal sharing context engages children and elicits multiple reasoning strategies. 
Empson et al. (2005) developed an elaborate classification of such strategies in a characterization 
of the anticipatory multiplicative reasoning involved in equal sharing tasks. Teaching experiments 
such as those by Streefland (1993) and others have used fraction interpretations other than the part-
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whole interpretation in developing powerful instructional approaches. In the approach adopted by 
Maher and colleagues, the measure construct was foregrounded and students had an opportunity to 
flexibly change units and target measures while working with a set of Cuisinaire rods (Steencken 
& Maher, 2003). 

An important strand of research that emerged from the semantic analysis of rational numbers 
was the study of children’s fraction schemes. As discussed above, Lesh and his colleagues analysed 
multiplicative reasoning in terms of manipulations on composite units. This provided a framework to 
analyse children’s responses and to study the development of multiplicative thinking in the context 
of their adapting responses. An extended research programme undertaken by Leslie Steffe aimed 
at describing children’s action schemes involving composite units (Steffe, 1992; Steffe & Olive, 
2010). A central aim of the research programme was to describe the evolving schemes underlying 
multiplicative thinking as a modification and development of children’s whole number schemes. 
The theme of the relation between whole number and fraction understanding is important and we 
shall return to it. 

Following the influential work of Liping Ma (1999) on the mathematical knowledge of 
elementary school teachers from the U.S. and China, many researchers became interested in the 
teaching and learning of fractions, and in teachers’ knowledge of fractions in Asian countries. The 
most telling differences in the knowledge of teachers from the U.S. and from China in Ma’s study 
were found in the topic of division of fractions. Several subsequent studies have explored teachers’ 
knowledge of this topic in Asian countries (Li & Huang, 2008). Other studies have compared how 
the topic of fractions is treated in textbooks from different countries (Alajmi, 2011). 

A group of researchers from Greece have attempted to study the learning of fractions from 
the standpoint of conceptual change, an approach that has been successful in the research on 
children’s understanding of science (Vamvakoussi & Vosniadou, 2004). In the conceptual change 
framework, difficulty in learning a new concept arises from the fact that it is in conflict with a 
robust conceptual structure or theory that is already in place. Children frequently respond to this 
conflict by accommodating the new concept, or new data, within the framework of the old concept, 
leading in many cases to ‘synthetic’ or ‘hybrid’ conceptions. Indeed for children who have been 
learning whole numbers over a period of a few years, fractions present new rules and relationships, 
which conflict with the whole number framework. Stafylidou and Vosniadou (2004) present a list of 
important elements of this conflict which include differences in symbolization, ordering, the nature 
of the unit and the procedures for operating with fractions. In their study, they attempted to explain 
students’ erroneous responses as originating in correct notions about natural numbers, that were 
extended incorrectly to the rational numbers. This is a confirmation of what has been recognized 
for long among researchers, namely, that children’s whole number conceptions can be hurdles in 
learning fractions (see for example Streefland, 1993). Vamvakoussi and Vosniadou (2004) argue 
that one of the fundamental conceptual changes necessary in going over from natural numbers to 
rational numbers is recognition of the property of density. Rational numbers are dense in the sense 
that there are infinitely many rational numbers between any two rational numbers. In contrast, 
natural numbers are discrete in the sense that there are no natural numbers between two consecutive 
natural numbers. In a study designed to test this hypothesis, they found that 9th graders had the most 
difficulty in internalizing the property of density and had less difficulty in identifying algebraic 
properties of rational and real numbers such as the existence of additive and multiplicative inverses. 
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The conceptual change approach, together with approaches that emphasize the discontinuity 
between whole number and rational number understanding has been criticized recently by Siegler, 
Thompson and Schneider (2011). They propose an alternative theory of numerical development that 
emphasizes the continuity in children’s growing understanding of number. The understanding of the 
magnitude of a number, whether a whole number or a rational number, is the key idea that reflects 
children’s understanding of a number domain. Siegler et al. take numerical development as “coming 
to understand that all real numbers have magnitudes that can be ordered and assigned specific 
locations on number lines” (p. 274). In their study, they found that ability to estimate the magnitude 
and the place of a given number on a numberline was a key correlate of children’s proficiency in 
fraction arithmetic as well as of overall mathematical knowledge. Judgements about the magnitude 
of a fraction involved strategic reasoning, and children invoked a multiplicity of strategies to make 
these decisions. Some of the incorrect strategies were due to drawing inaccurate analogies with 
strategies for whole numbers. Rather than interpret this as a discontinuity between whole number 
and rational number understanding, they point out that drawing incorrect analogies on the basis 
of appealing surface similarity rather than structural similarity, is a common challenge in learning 
across several domains. The idea that fractions like whole numbers have magnitudes and can be 
ordered on the number line may precisely be the key connecting idea that may help students master 
the domain of rational numbers. This theory is promising in terms of implicit suggestions for what 
must be emphasised in the teaching of fractions.

Agendas for Research on Fractions and Multiplicative 
Reasoning

As discussed in the previous sections, a vast number of research studies have been undertaken in 
the last three and a half decades on the teaching and learning of fractions in school and related 
topics such as proportional and multiplicative thinking. This body of research has moved beyond 
the analysis of student errors and difficulties in implementing fraction computation algorithms. It 
has shown how fraction interpretations are varied depending on the context of application and that 
this diversity is not explicitly addressed in the typical school curriculum. It has pointed to important 
underlying concepts and action schemes such as equipartitioning, unit composition and flexible 
unitization. It has explored the pedagogical possibilities of rich contexts such as equal sharing. It 
has uncovered students’ spontaneous ways of reasoning in contexts while generating, comparing or 
ordering fractions. It has illuminated the conceptual changes that children need to make in extending 
their whole number knowledge to the domain of fractions. 

Although the research on children’s learning of fractions is vast, it has had limited impact 
on curriculum design and on the teaching and learning of fractions. For example, we do not 
find the widespread use of sharing contexts to support students in making sense of fractions or 
to elicit reasoning about the magnitude of fractions. Although many textbooks have introduced 
interpretations of fractions other than part-whole, such as the measure or the operator interpretation, 
the interpretations tend to be disparate. There is no clear vision of a fully developed concept of 
fraction that connects and integrates the different interpretations into a coherent whole. A part of the 
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reason is the complexity of the topic of fractions and the connections between fractions and other 
topics.

It is interesting to compare this situation with the topic domain of whole numbers, which is 
arguably a simpler domain. Research on whole number learning has led to a more coherent picture 
of how students’ knowledge in the domain evolves and to a larger impact on curricula. A recent 
attempt to explicitly articulate such a picture uses the construct of a learning-teaching trajectory as 
a cohering frame to integrate research findings in the domain (Sarama & Clements, 2009). Learning 
trajectories are frequently described as conjectured progressions of learning experiences that 
students encounter as they move from informal to complex, refined and powerful ideas over time. 

The idea of learning trajectories has re-emerged as a useful way of organizing and disseminating 
complex research findings about student learning in specific topic domains. The recent usage of the 
phrase in the mathematics education research literature can be traced to Simon (1995), for whom 
‘hypothetical learning trajectory’ was a construct that a teacher might use to integrate her learning 
goals for the students with the students’ own mathematical thinking. The phrase was intended to 
stress the openness of the teacher towards students’ ways of thinking and the need to adjust one’s 
teaching in accordance with them, a basic tenet of the constructivist approach to mathematics 
teaching and learning. As indicated above, the phrase has acquired a broader meaning in current 
research literature as a construct that can serve to integrate research findings about teaching and 
learning in a topic domain (Confrey, Maloney, Nguyen, Mojica & Myers, 2009).

Learning trajectories in specific areas have also been viewed as connecting research with 
curriculum design and teaching practice, as bridges that connect ‘grand theories’ in education 
with specific theories and instructional practice (Sarama & Clements, 2009). If it were possible 
to construct coherent learning trajectories for major curricular strands, it would have obvious 
advantages. Among other benefits, knowledge of learning trajectories would strengthen domain 
based pedagogical content knowledge leading to effective teaching. The identification of general 
learning paths is possible only when there are commonalities in the learning progression of 
individual children under diverse conditions of learning. Such commonality could result from the 
existence of general mental structures that underlie mathematical competence with a common 
developmental path or the existence of shared cultural elements that shape learning and instruction. 
These factors hold to a large extent for the domain of whole numbers and this is reflected in the 
learning trajectories that have been described for the domain of whole number learning by different 
researchers (Fuson, 2009; Sarama & Clements, 2009).

While the idea of a learning trajectory has been productive in the topic domain of whole 
number addition and subtraction, it has been difficult to extend it to the topic domain of multiplicative 
thinking. Researchers at the Freudenthal Institute, having previously published a description of 
learning–teaching trajectories for the whole number domain, published a learning–teaching 
trajectory for Fractions, percentages, decimals and proportions in 2005 (English version published 
as van Galen et al., 2008). Here the authors present learning–teaching trajectories separately for 
the four topic areas of proportions, fractions, percentages and decimals, while acknowledging their 
inter-connectedness. An attempt is made at the end of the presentation to lay down general learning 
attainment targets common to these topics. These include important ideas and their interconnections, 
how knowledge of numerical relationships can be used mindfully in solving problems, and 
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examples of reasoning. An examination of the description of the learning-teaching trajectories and 
a comparison with themes discussed in the literature reveals that ideas and topics included represent 
a small selection of what is important in the domain. Indeed, the book is considerably smaller than 
the corresponding book for whole numbers although the topic domain itself is significantly larger.

An ambitious attempt to synthesize a large body of research on rational number using learning 
trajectories as a frame has recently been attempted by Jere Confrey and her colleagues (Confrey et 
al., 2009; Confrey & Maloney, 2010). Confrey and Maloney (2010) identify seven interconnected 
learning trajectories as forming the topic domain of rational numbers: equipartitioning, ratio, 
division/multiplication, similarity/scaling, area/volume, decimals/percents and fraction as number. 
Of these, they provide a description of the trajectory for equipartitioning in terms of a two-
dimensional matrix with proficiency levels along one dimension and task classes along the other. 
The ‘task’ dimension arises from the fact that tasks requiring equipartitioning may be of various 
levels of difficulty. This is illustrated in the manner in which the strategy of ‘composition of factors’ 
is used: when a student asked to divide a rectangular whole into eight equal parts, she may begin 
by splitting the rectangle into four equal parts with vertical cuts and then halve the parts with a 
horizontal cut. This strategy is easier to implement for ‘eight’ equal parts (a 2^n split), than for ‘six’ 
equal parts (partitioning into 3 equal parts is an odd-split, which is harder). Confrey et al.’s learning 
trajectory matrix for equipartitioning is an elaborate 16 × 13 matrix. While this is a fairly exhaustive 
description of the many ways in which children achieve equipartitioning of a whole, it is not clear 
if instruction should be designed to follow the progression in such a matrix.

From these efforts, one can see that an attempt to organize research findings on the learning 
of fractions and multiplicative reasoning into a coherent picture capable of informing instruction 
design has begun. At present however, one cannot still discern themes around which research 
findings can cohere and reflect a cumulative trend. I will end this review by suggesting three themes 
of research that are important. One of these themes is well researched, while the other two need to 
be addressed more centrally.

The three broad themes that must form the core strands around which research findings can be 
integrated to yield possible learning trajectories are children’s thinking, cultural supports for learning 
and acquiring symbolic facility. The first of these themes is about children’s intuitive thinking, 
about their spontaneous or untutored responses to tasks. Instruction consistent with a constructivist 
approach would give central place to such responses as starting points for instruction. Two constructs 
which try to capture children’s thinking, emerging from slightly different research perspectives are 
strategies and action schemes. The construct of ‘strategy’ is closer to the descriptive level and 
groups responses to tasks in terms of patterns that are observed frequently. A large number of 
studies attempt to uncover and classify children’s strategies in multiplicative reasoning tasks. Some 
approaches aim at a developmental account centred on strategies, exemplified by the microgenetic 
studies by Siegler and his colleagues of children’s addition strategies (Shrager & Siegler, 1998). 
Action schemes go further than strategies in level of theorising, and are mental constructs or objects 
that are posited as the source of children’s thinking and response patterns. Many researchers, 
influenced by Piaget and Post-Piagetian work such as the semantic analyses of rational number 
constructs, have attempted to use schemes as organizing constructs to describe children’s thinking 
in the rational number domain and its development. This has led to an understanding of a variety of 
schemes important for multiplicative thinking such as equipartitioning, unit iteration, unitizing and 
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many-many correspondence. An elaborate account of the emergence of children’s fractions schemes 
from whole number schemes is presented by Steffe and Olive (2010). This theme is perhaps the 
most developed in the extant literature on the learning of fractions and multiplicative reasoning.

A second theme of research that is needed to identify learning trajectories centres around the 
sources and support for learning in the culture and seeks to illuminate the relation between out-of-
school mathematics and school mathematics. With regard to fractions, everyday experience exposes 
children to a few basic fractions, which may have special words in local languages (Subramaniam & 
Naik, 2010). The more significant form of support that everyday experience provides comes from the 
diversity of contexts in which fraction words are used, reflecting a richness of fraction interpretations 
in everyday usage. Many everyday situations in which people deal with quantities involve 
proportional relations and call for multiplicative thinking. Students, especially those participating 
in household income generation are likely to be familiar with such contexts. Given the ubiquity of 
proportional relations, and therefore the importance of multiplicative thinking, such studies can 
contribute to both identifying general principles and developing localized versions of learning 
trajectories. Another domain that is rich in terms of out-of-school mathematics is measurement. 
Informal work contexts incorporate many measurement modes and units, often expressed in simple 
fractions, all of which are potentially rich starting points for instruction (Subramaniam & Bose, 
2012). Studies that uncover out-of-school knowledge and look for opportunities to connect it with 
school mathematics may confront complex issues because the culture that students are a part of is 
varied depending on location and social stratum and also changing (Subramaniam, 2012). Such 
studies are also relevant to broader issues of equity and the relation of mathematics education to 
empowering individuals.

A third theme of research that is important is how children bridge spontaneous ways of thinking 
and symbolic routines. As children learn to solve more complex problems they must increasingly 
rely on the mathematical power made available through symbolization. Yet, they must make sense 
of the symbols and their transformations, drawing on their intuitive understanding of situations and 
on previous symbolic knowledge. In the domain of multiplicative reasoning, the primary symbolic 
tools consist of the fraction notation and the arithmetic of fractions. These symbolic tools consolidate 
and extend the ability to represent and manipulate multiplicative relations. They provide the tools 
to deal with the full range of situations involving proportionality and also prepare the student for 
algebra. This theme of research, which is relatively less developed, has fruitful connections with the 
research in learning algebra – an intensively researched domain in mathematics education. Empson, 
Levi and Carpenter (2011) have recently explored the use of relational thinking in the learning of 
fraction arithmetic, where relational thinking involves children’s use of fundamental properties of 
operations and equality to develop efficient solution strategies. Focus on relational thinking has 
been shown to be important in early algebra instruction (Fujii & Stephens, 2008).

Research on the learning of fractions and multiplicative reasoning is a mature field with a 
large number of research studies done over several decades. However the impact of this research 
on curriculum and instructional design is proportionately small. There is a need to move to research 
programs that accumulate robust findings in a manner that can provide explicit guidelines for 
instruction, which in turn can be tested by intervention studies. Two relatively under-researched 
themes may be important to move to this phase: the study of cultural supports for learning fractions 
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and multiplicative reasoning and the acquisition of symbolic capability. Research interest in these 
questions is active and one anticipates that studies addressing these issues will increase. This would 
contribute to consolidating the impact of findings in this domain.
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DISCUSSION

Chair- Lynn Webb, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa

Q1:  Multiplication has one reference of changing operation while the other being the additive 
one. I am also reminded that this was one of the mistakes which Aristotle himself made while 
computing and trying to answer the problem of the law of free fall. Keeping this in mind why 
is it not emphasized in the curriculum that these are two distinct operations and also corre-
sponding to that there are two inverse operations? There might be other kinds of multiplica-
tive thinking that one needs to look at. The question is why is it not clearly mentioned in the 
textbook? What is the reason, why mathematicians want to keep it as a single operation?

KS: That’s absolutely right. First of all it ought to be there in the curriculum very clearly. When-
ever we have done work with the teachers this is always something of an eye opener. There’s 
a paradox where you prove that one rupee is equal to one paisa, as in if you put 100 as 10 into 
10 and then you say 1/10 into 1/10 and so on. Actually, this is a good way to open the idea 
when you are doing the multiplication operation, so something funny is happening. The units 
are changing and this should be a part of the curriculum and common knowledge of teachers 
which should be used in their teaching in a very central way. Regarding why is it not there, 
that’s something I can speculate about. I think it is a certain attitude to mathematics. Its also 
a disconnect between mathematics and the way mathematics is used in the world. There are 
many reasons which I can speculate about. There is no hard and fast reason. Its just tradition 
and we need to change it.
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Q2: My question is whether it is possible to develop a conceptual understanding of multiplica-
tive thinking, fractions and algebra without numbers. My reason for asking this is because in 
some indigenous parts of Australia, for numbers and also some elements, I have found that 
in early childhood, among very young children the concept of measurement and comparison 
is far more natural than concept of counting.

KS: It’s a good question and thank you for raising this question. There are clearly two points 
here. Measurement originates in completely different structures and counting has a different 
origin. So you can have both of these built up little by little. There have been curricular ex-
periments starting with the measurement idea rather than counting idea. It has been tried out 
in Russia and also elsewhere. I don’t have a position. It can be that one goes some distance 
building the idea of numbers but even in place like Papua New Guinea or New Zealand all 
of these are entering into economy which are characterized by currency, by decimal struc-
tures. It’s becoming part of the knowledge of the culture, very rapidly in many places. If you 
look at Geoffrey Saxe’s work, when he visited Papua New Guinea again, he found that there 
is integration of all these cultures into the monetary economy. So it’s really changing and 
something that, I would say, counting is really the starting point and it’s the foundation, and 
one can go very far ahead. It might be that these things have independent origins but they are 
very tightly interconnected and one must build these interconnections. I don’t have a clear 
position on where to start. I prefer to start from counting.


